
A Practical Quantum Hoare Logic

Mingsheng Ying

Centre for Quantum Software and Information
University of Technology Sydney

Outline

1. Introduction

2. QHL without Classical Variables

3. From QHL to Practical QHL

4. Conclusion

Outline

1. Introduction

2. QHL without Classical Variables

3. From QHL to Practical QHL

4. Conclusion

Quantum programming platforms
▶ Qiskit @ IBM Q# @ Microsoft

▶ Cirq @ Google Braket @ AWS
▶ TKET @ Quantinuum
▶

[1] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A.
Geller, S. Troyer and K. Svore, Quantum programming languages,
Nature Reviews Physics 2020.

How to verify quantum programs?

▶ How can we develop a Hoare-style logic for quantum programs?

Quantum programming platforms
▶ Qiskit @ IBM Q# @ Microsoft
▶ Cirq @ Google Braket @ AWS

▶ TKET @ Quantinuum
▶

[1] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A.
Geller, S. Troyer and K. Svore, Quantum programming languages,
Nature Reviews Physics 2020.

How to verify quantum programs?

▶ How can we develop a Hoare-style logic for quantum programs?

Quantum programming platforms
▶ Qiskit @ IBM Q# @ Microsoft
▶ Cirq @ Google Braket @ AWS
▶ TKET @ Quantinuum

▶

[1] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A.
Geller, S. Troyer and K. Svore, Quantum programming languages,
Nature Reviews Physics 2020.

How to verify quantum programs?

▶ How can we develop a Hoare-style logic for quantum programs?

Quantum programming platforms
▶ Qiskit @ IBM Q# @ Microsoft
▶ Cirq @ Google Braket @ AWS
▶ TKET @ Quantinuum
▶

[1] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A.
Geller, S. Troyer and K. Svore, Quantum programming languages,
Nature Reviews Physics 2020.

How to verify quantum programs?

▶ How can we develop a Hoare-style logic for quantum programs?

Quantum programming platforms
▶ Qiskit @ IBM Q# @ Microsoft
▶ Cirq @ Google Braket @ AWS
▶ TKET @ Quantinuum
▶

[1] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A.
Geller, S. Troyer and K. Svore, Quantum programming languages,
Nature Reviews Physics 2020.

How to verify quantum programs?
▶ How can we develop a Hoare-style logic for quantum programs?

Outline

1. Introduction

2. QHL without Classical Variables

3. From QHL to Practical QHL

4. Conclusion

Programming Language qWhile

S ::= skip | q := |0⟩
|S1; S2

| q := U[q]
| if (□m · M[q] = m → Sm) fi
| while M[q] = 1 do S od

Example: Quantum Walk
▶ Quantum walk on an n-circle with an absorbing boundary at

position 1.

▶ Hc —– 2-dimensional Hilbert space with basis states |L⟩ and |R⟩,
indicating directions.

▶ Hp —– n-dimensional Hilbert space withl basis states
|0⟩, |1⟩, ..., |n − 1⟩, denoting positions.

▶ Quantum walk —– composite system of a coin and a walker
moving on these positions.

▶ State space —– H = Hc ⊗Hp.

Example: Quantum Walk
▶ Quantum walk on an n-circle with an absorbing boundary at

position 1.
▶ Hc —– 2-dimensional Hilbert space with basis states |L⟩ and |R⟩,

indicating directions.

▶ Hp —– n-dimensional Hilbert space withl basis states
|0⟩, |1⟩, ..., |n − 1⟩, denoting positions.

▶ Quantum walk —– composite system of a coin and a walker
moving on these positions.

▶ State space —– H = Hc ⊗Hp.

Example: Quantum Walk
▶ Quantum walk on an n-circle with an absorbing boundary at

position 1.
▶ Hc —– 2-dimensional Hilbert space with basis states |L⟩ and |R⟩,

indicating directions.
▶ Hp —– n-dimensional Hilbert space withl basis states

|0⟩, |1⟩, ..., |n − 1⟩, denoting positions.

▶ Quantum walk —– composite system of a coin and a walker
moving on these positions.

▶ State space —– H = Hc ⊗Hp.

Example: Quantum Walk
▶ Quantum walk on an n-circle with an absorbing boundary at

position 1.
▶ Hc —– 2-dimensional Hilbert space with basis states |L⟩ and |R⟩,

indicating directions.
▶ Hp —– n-dimensional Hilbert space withl basis states

|0⟩, |1⟩, ..., |n − 1⟩, denoting positions.
▶ Quantum walk —– composite system of a coin and a walker

moving on these positions.

▶ State space —– H = Hc ⊗Hp.

Example: Quantum Walk
▶ Quantum walk on an n-circle with an absorbing boundary at

position 1.
▶ Hc —– 2-dimensional Hilbert space with basis states |L⟩ and |R⟩,

indicating directions.
▶ Hp —– n-dimensional Hilbert space withl basis states

|0⟩, |1⟩, ..., |n − 1⟩, denoting positions.
▶ Quantum walk —– composite system of a coin and a walker

moving on these positions.
▶ State space —– H = Hc ⊗Hp.

Example: Quantum Walk
▶ Initial state —– |L⟩|0⟩.

▶ Each step of the walk:

1. Measure to see whether it is at position 1 (absorbing boundary). If
“yes”, then terminate; otherwise, continue:

Myes = |1⟩⟨1|, Mno = Ip − Myes = ∑
i,1

|i⟩⟨i|

2. Coin-tossing:

Hadamard operator H =
1√

2

(
1 1
1 −1

)
3. Shift operator:

S =
n−1

∑
i=0

|L⟩⟨L| ⊗ |i ⊖ 1⟩⟨i|+
n−1

∑
i=0

|R⟩⟨R| ⊗ |i ⊕ 1⟩⟨i|.

Example: Quantum Walk
▶ Initial state —– |L⟩|0⟩.
▶ Each step of the walk:

1. Measure to see whether it is at position 1 (absorbing boundary). If
“yes”, then terminate; otherwise, continue:

Myes = |1⟩⟨1|, Mno = Ip − Myes = ∑
i,1

|i⟩⟨i|

2. Coin-tossing:

Hadamard operator H =
1√

2

(
1 1
1 −1

)
3. Shift operator:

S =
n−1

∑
i=0

|L⟩⟨L| ⊗ |i ⊖ 1⟩⟨i|+
n−1

∑
i=0

|R⟩⟨R| ⊗ |i ⊕ 1⟩⟨i|.

Example: Quantum Walk
▶ Initial state —– |L⟩|0⟩.
▶ Each step of the walk:

1. Measure to see whether it is at position 1 (absorbing boundary). If
“yes”, then terminate; otherwise, continue:

Myes = |1⟩⟨1|, Mno = Ip − Myes = ∑
i,1

|i⟩⟨i|

2. Coin-tossing:

Hadamard operator H =
1√

2

(
1 1
1 −1

)
3. Shift operator:

S =
n−1

∑
i=0

|L⟩⟨L| ⊗ |i ⊖ 1⟩⟨i|+
n−1

∑
i=0

|R⟩⟨R| ⊗ |i ⊕ 1⟩⟨i|.

Example: Quantum Walk
▶ Initial state —– |L⟩|0⟩.
▶ Each step of the walk:

1. Measure to see whether it is at position 1 (absorbing boundary). If
“yes”, then terminate; otherwise, continue:

Myes = |1⟩⟨1|, Mno = Ip − Myes = ∑
i,1

|i⟩⟨i|

2. Coin-tossing:

Hadamard operator H =
1√

2

(
1 1
1 −1

)

3. Shift operator:

S =
n−1

∑
i=0

|L⟩⟨L| ⊗ |i ⊖ 1⟩⟨i|+
n−1

∑
i=0

|R⟩⟨R| ⊗ |i ⊕ 1⟩⟨i|.

Example: Quantum Walk
▶ Initial state —– |L⟩|0⟩.
▶ Each step of the walk:

1. Measure to see whether it is at position 1 (absorbing boundary). If
“yes”, then terminate; otherwise, continue:

Myes = |1⟩⟨1|, Mno = Ip − Myes = ∑
i,1

|i⟩⟨i|

2. Coin-tossing:

Hadamard operator H =
1√

2

(
1 1
1 −1

)
3. Shift operator:

S =
n−1

∑
i=0

|L⟩⟨L| ⊗ |i ⊖ 1⟩⟨i|+
n−1

∑
i=0

|R⟩⟨R| ⊗ |i ⊕ 1⟩⟨i|.

Example: Quantum Walk
▶ Difference between quantum walk and classical random walk:

▶ Coin (or direction) variable c can be in a superposition:

|+⟩ = 1√
2
(|L⟩+ |R⟩)

▶ Walker moves left and right “simultaneously”:

1√
2
(|L⟩+ |R⟩)|i⟩ → 1√

2
(|L⟩|i ⊖ 1⟩+ |R⟩|i ⊕ 1⟩).

▶ Quantum walk as quantum program:

QW ≡ c := |L⟩; p := |0⟩; while M[p] = no do c := H[c];
c, p := S[c, p] od

Example: Quantum Walk
▶ Difference between quantum walk and classical random walk:

▶ Coin (or direction) variable c can be in a superposition:

|+⟩ = 1√
2
(|L⟩+ |R⟩)

▶ Walker moves left and right “simultaneously”:

1√
2
(|L⟩+ |R⟩)|i⟩ → 1√

2
(|L⟩|i ⊖ 1⟩+ |R⟩|i ⊕ 1⟩).

▶ Quantum walk as quantum program:

QW ≡ c := |L⟩; p := |0⟩; while M[p] = no do c := H[c];
c, p := S[c, p] od

Example: Quantum Walk
▶ Difference between quantum walk and classical random walk:

▶ Coin (or direction) variable c can be in a superposition:

|+⟩ = 1√
2
(|L⟩+ |R⟩)

▶ Walker moves left and right “simultaneously”:

1√
2
(|L⟩+ |R⟩)|i⟩ → 1√

2
(|L⟩|i ⊖ 1⟩+ |R⟩|i ⊕ 1⟩).

▶ Quantum walk as quantum program:

QW ≡ c := |L⟩; p := |0⟩; while M[p] = no do c := H[c];
c, p := S[c, p] od

Example: Quantum Walk
▶ Difference between quantum walk and classical random walk:

▶ Coin (or direction) variable c can be in a superposition:

|+⟩ = 1√
2
(|L⟩+ |R⟩)

▶ Walker moves left and right “simultaneously”:

1√
2
(|L⟩+ |R⟩)|i⟩ → 1√

2
(|L⟩|i ⊖ 1⟩+ |R⟩|i ⊕ 1⟩).

▶ Quantum walk as quantum program:

QW ≡ c := |L⟩; p := |0⟩; while M[p] = no do c := H[c];
c, p := S[c, p] od

Operational Semantics

(Sk) ⟨skip, ρ⟩ → ⟨↓, ρ⟩
(Ini) ⟨q := |0⟩, ρ⟩ → ⟨↓, ρ

q
0⟩ (ρ

q
0 = ∑

n
|0⟩q⟨n|ρ|n⟩q⟨0|)

(Uni) ⟨q := U[q], ρ⟩ → ⟨↓, UρU†⟩

(Seq)
⟨S1, ρ⟩ → ⟨S′

1, ρ′⟩
⟨S1; S2, ρ⟩ → ⟨S′

1; S2, ρ′⟩ (↓; S2 = S2)

(IF) ⟨if (□m · M[q] = m → Sm) fi, ρ⟩ → ⟨Sm, MmρM†
m⟩ for each m

(L0) ⟨while M[q] = 1 do S od, ρ⟩ → ⟨↓, M0ρM†
0⟩

(L1) ⟨while M[q] = 1 do S, ρ⟩ → ⟨S; while M[q] = 1 do S, M1ρM†
1⟩

Denotational Semantics

Semantic function of quantum program S:

⟦S⟧ : D(Hall) → D(Hall)

⟦S⟧(ρ) = ∑{|ρ′ : ⟨S, ρ⟩ →∗ ⟨↓, ρ′⟩|} for any input ρ

Quantum Predicates

▶ A quantum predicate is a Hermitian operator (observable) P such
that 0 ⊑ P ⊑ I.

▶ Quantum predicates = Effects (quantum foundations literature).

[2] E. D’Hondt and P. Panangaden, Quantum weakest preconditions,
Math. Struct. in Comput. Sci. 2006.

Quantum Hoare Triples

▶ A correctness formula is a statement of the form:

{P}S{Q}

▶ S is a quantum program
▶ Precondition P and postcondition Q are quantum predicates.

Quantum Predicates

▶ A quantum predicate is a Hermitian operator (observable) P such
that 0 ⊑ P ⊑ I.

▶ Quantum predicates = Effects (quantum foundations literature).

[2] E. D’Hondt and P. Panangaden, Quantum weakest preconditions,
Math. Struct. in Comput. Sci. 2006.

Quantum Hoare Triples

▶ A correctness formula is a statement of the form:

{P}S{Q}

▶ S is a quantum program
▶ Precondition P and postcondition Q are quantum predicates.

Quantum Predicates

▶ A quantum predicate is a Hermitian operator (observable) P such
that 0 ⊑ P ⊑ I.

▶ Quantum predicates = Effects (quantum foundations literature).

[2] E. D’Hondt and P. Panangaden, Quantum weakest preconditions,
Math. Struct. in Comput. Sci. 2006.

Quantum Hoare Triples
▶ A correctness formula is a statement of the form:

{P}S{Q}

▶ S is a quantum program
▶ Precondition P and postcondition Q are quantum predicates.

Quantum Predicates

▶ A quantum predicate is a Hermitian operator (observable) P such
that 0 ⊑ P ⊑ I.

▶ Quantum predicates = Effects (quantum foundations literature).

[2] E. D’Hondt and P. Panangaden, Quantum weakest preconditions,
Math. Struct. in Comput. Sci. 2006.

Quantum Hoare Triples
▶ A correctness formula is a statement of the form:

{P}S{Q}

▶ S is a quantum program

▶ Precondition P and postcondition Q are quantum predicates.

Quantum Predicates

▶ A quantum predicate is a Hermitian operator (observable) P such
that 0 ⊑ P ⊑ I.

▶ Quantum predicates = Effects (quantum foundations literature).

[2] E. D’Hondt and P. Panangaden, Quantum weakest preconditions,
Math. Struct. in Comput. Sci. 2006.

Quantum Hoare Triples
▶ A correctness formula is a statement of the form:

{P}S{Q}

▶ S is a quantum program
▶ Precondition P and postcondition Q are quantum predicates.

Total and Partial Correctness
1. {P}S{Q} is true in the sense of total correctness:

|=tot {P}S{Q}

if for all inputs ρ:
tr(Pρ) ≤ tr(Q⟦S⟧(ρ))

2. {P}S{Q} is true in the sense of partial correctness:

|=par {P}S{Q},

if for all inputs ρ:

tr(Pρ) ≤ tr(Q⟦S⟧(ρ)) + [tr(ρ)− tr(⟦S⟧(ρ))]

Total and Partial Correctness
1. {P}S{Q} is true in the sense of total correctness:

|=tot {P}S{Q}

if for all inputs ρ:
tr(Pρ) ≤ tr(Q⟦S⟧(ρ))

2. {P}S{Q} is true in the sense of partial correctness:

|=par {P}S{Q},

if for all inputs ρ:

tr(Pρ) ≤ tr(Q⟦S⟧(ρ)) + [tr(ρ)− tr(⟦S⟧(ρ))]

Proof System for Partial Correctness

(Axiom-Sk) {P}Skip{P}

(Axiom-Ini)

{
∑
n
|n⟩q⟨0|P|0⟩q⟨n|

}
q := |0⟩{P}

(Axiom-Uni) {U†PU}q := U[q]{P}

(Rule-Seq)
{P}S1{Q} {Q}S2{R}

{P}S1; S2{R}

(Rule-IF)
{Pm}Sm{Q} for all m

{∑m M†
mPmMm}if (□m · M[q] = m → Sm) fi{Q}

(Rule-LP)
{Q}S{M†

0PM0 + M†
1QM1}

{M†
0PM0 + M†

1QM1}while M[q] = 1 do S{P}

(Rule-Ord)
P ⊑ P′ {P′}S{Q′} Q′ ⊑ Q

{P}S{Q}

Soundness and Completeness

Theorem
For any quantum program S and quantum predicates P, Q,

|=par {P}S{Q} if and only if ⊢PD {P}S{Q}.

[3] M. S. Ying, Floyd-Hoare logic for quantum programs, TOPLAS
2011.

▶ Proof system for total correctness (omitted)

QHL Theorem Provers

▶ Isabelle/HOL —- J. Y. Liu et al., CAV’19
▶ CoqQ —- L. Zhou et al., POPL’24

Soundness and Completeness

Theorem
For any quantum program S and quantum predicates P, Q,

|=par {P}S{Q} if and only if ⊢PD {P}S{Q}.

[3] M. S. Ying, Floyd-Hoare logic for quantum programs, TOPLAS
2011.

▶ Proof system for total correctness (omitted)

QHL Theorem Provers

▶ Isabelle/HOL —- J. Y. Liu et al., CAV’19
▶ CoqQ —- L. Zhou et al., POPL’24

Soundness and Completeness

Theorem
For any quantum program S and quantum predicates P, Q,

|=par {P}S{Q} if and only if ⊢PD {P}S{Q}.

[3] M. S. Ying, Floyd-Hoare logic for quantum programs, TOPLAS
2011.

▶ Proof system for total correctness (omitted)

QHL Theorem Provers
▶ Isabelle/HOL —- J. Y. Liu et al., CAV’19

▶ CoqQ —- L. Zhou et al., POPL’24

Soundness and Completeness

Theorem
For any quantum program S and quantum predicates P, Q,

|=par {P}S{Q} if and only if ⊢PD {P}S{Q}.

[3] M. S. Ying, Floyd-Hoare logic for quantum programs, TOPLAS
2011.

▶ Proof system for total correctness (omitted)

QHL Theorem Provers
▶ Isabelle/HOL —- J. Y. Liu et al., CAV’19
▶ CoqQ —- L. Zhou et al., POPL’24

Outline

1. Introduction

2. QHL without Classical Variables

3. From QHL to Practical QHL

4. Conclusion

Limitations of QHL
▶ No classical variables

▶ Curse of dimensionality: a quantum predicate for n qubits is a
2n × 2n matrix —– a bottleneck for scalable verification.

▶ Assertion language?

▶ An assertion for a classical program is a predicate —–
Boolean-valued function, over the state space.

▶ It can be represented by a first-order logical formula —–
constructed from atomic formulas using connectives and
quantifiers.

▶ Often much more economic than as a Boolean-valued function
over the entire state space.

▶ How to define an assertion language for quantum programs?

Limitations of QHL
▶ No classical variables
▶ Curse of dimensionality: a quantum predicate for n qubits is a

2n × 2n matrix —– a bottleneck for scalable verification.

▶ Assertion language?

▶ An assertion for a classical program is a predicate —–
Boolean-valued function, over the state space.

▶ It can be represented by a first-order logical formula —–
constructed from atomic formulas using connectives and
quantifiers.

▶ Often much more economic than as a Boolean-valued function
over the entire state space.

▶ How to define an assertion language for quantum programs?

Limitations of QHL
▶ No classical variables
▶ Curse of dimensionality: a quantum predicate for n qubits is a

2n × 2n matrix —– a bottleneck for scalable verification.
▶ Assertion language?

▶ An assertion for a classical program is a predicate —–
Boolean-valued function, over the state space.

▶ It can be represented by a first-order logical formula —–
constructed from atomic formulas using connectives and
quantifiers.

▶ Often much more economic than as a Boolean-valued function
over the entire state space.

▶ How to define an assertion language for quantum programs?

Limitations of QHL
▶ No classical variables
▶ Curse of dimensionality: a quantum predicate for n qubits is a

2n × 2n matrix —– a bottleneck for scalable verification.
▶ Assertion language?

▶ An assertion for a classical program is a predicate —–
Boolean-valued function, over the state space.

▶ It can be represented by a first-order logical formula —–
constructed from atomic formulas using connectives and
quantifiers.

▶ Often much more economic than as a Boolean-valued function
over the entire state space.

▶ How to define an assertion language for quantum programs?

Limitations of QHL
▶ No classical variables
▶ Curse of dimensionality: a quantum predicate for n qubits is a

2n × 2n matrix —– a bottleneck for scalable verification.
▶ Assertion language?

▶ An assertion for a classical program is a predicate —–
Boolean-valued function, over the state space.

▶ It can be represented by a first-order logical formula —–
constructed from atomic formulas using connectives and
quantifiers.

▶ Often much more economic than as a Boolean-valued function
over the entire state space.

▶ How to define an assertion language for quantum programs?

Limitations of QHL
▶ No classical variables
▶ Curse of dimensionality: a quantum predicate for n qubits is a

2n × 2n matrix —– a bottleneck for scalable verification.
▶ Assertion language?

▶ An assertion for a classical program is a predicate —–
Boolean-valued function, over the state space.

▶ It can be represented by a first-order logical formula —–
constructed from atomic formulas using connectives and
quantifiers.

▶ Often much more economic than as a Boolean-valued function
over the entire state space.

▶ How to define an assertion language for quantum programs?

Limitations of QHL
▶ No classical variables
▶ Curse of dimensionality: a quantum predicate for n qubits is a

2n × 2n matrix —– a bottleneck for scalable verification.
▶ Assertion language?

▶ An assertion for a classical program is a predicate —–
Boolean-valued function, over the state space.

▶ It can be represented by a first-order logical formula —–
constructed from atomic formulas using connectives and
quantifiers.

▶ Often much more economic than as a Boolean-valued function
over the entire state space.

▶ How to define an assertion language for quantum programs?

Enhanced Expressivity of Programming Language
▶ Classical variables

▶ Quantum arrays
▶ Parameterized quantum gates
▶ Syntax of qWhile+:

P ::= skip | x := e | q := |0⟩
| U(t1, ..., tm)[q1, ..., qn]

| x := M[q1, ..., qn]

| P1; P2 | if b then P1 else P0 | while b do P

Enhanced Expressivity of Programming Language
▶ Classical variables
▶ Quantum arrays

▶ Parameterized quantum gates
▶ Syntax of qWhile+:

P ::= skip | x := e | q := |0⟩
| U(t1, ..., tm)[q1, ..., qn]

| x := M[q1, ..., qn]

| P1; P2 | if b then P1 else P0 | while b do P

Enhanced Expressivity of Programming Language
▶ Classical variables
▶ Quantum arrays
▶ Parameterized quantum gates

▶ Syntax of qWhile+:

P ::= skip | x := e | q := |0⟩
| U(t1, ..., tm)[q1, ..., qn]

| x := M[q1, ..., qn]

| P1; P2 | if b then P1 else P0 | while b do P

Enhanced Expressivity of Programming Language
▶ Classical variables
▶ Quantum arrays
▶ Parameterized quantum gates
▶ Syntax of qWhile+:

P ::= skip | x := e | q := |0⟩
| U(t1, ..., tm)[q1, ..., qn]

| x := M[q1, ..., qn]

| P1; P2 | if b then P1 else P0 | while b do P

Intuitive Correctness Specifications
▶ Syntax of quantum predicates:

A ::= K(t)[q] | ¬A | A1 ⊗ A2 | F(t)[q]({Ai}).

▶ Hoare triples:
{φ, A} P {ψ, B}

▶ φ, ψ are first-order logical formulas;
▶ A, B are quantum predicates parameterized by classical variables

Intuitive Correctness Specifications
▶ Syntax of quantum predicates:

A ::= K(t)[q] | ¬A | A1 ⊗ A2 | F(t)[q]({Ai}).

▶ Hoare triples:
{φ, A} P {ψ, B}

▶ φ, ψ are first-order logical formulas;
▶ A, B are quantum predicates parameterized by classical variables

Intuitive Correctness Specifications
▶ Syntax of quantum predicates:

A ::= K(t)[q] | ¬A | A1 ⊗ A2 | F(t)[q]({Ai}).

▶ Hoare triples:
{φ, A} P {ψ, B}

▶ φ, ψ are first-order logical formulas;

▶ A, B are quantum predicates parameterized by classical variables

Intuitive Correctness Specifications
▶ Syntax of quantum predicates:

A ::= K(t)[q] | ¬A | A1 ⊗ A2 | F(t)[q]({Ai}).

▶ Hoare triples:
{φ, A} P {ψ, B}

▶ φ, ψ are first-order logical formulas;
▶ A, B are quantum predicates parameterized by classical variables

Simplified proof system
▶ A new idea in formulating proof rule for quantum

measurements.

▶ The proof system can be conveniently combined with classical
first-order logic.

Proof System

(Axiom-Ski) {φ, A} skip {φ, A}
(Axiom-Ass) {φ[e/x], A[e/x]} x := e {φ, A}
(Axiom-Init) {φ, FB[q](A)} q := |0⟩ {φ, A}
(Axiom-Uni)

{
φ, FU(t)[q](A)

}
U(t)[q] {φ, A}

(Axiom-Meas)
y < free(φ) ∪ cv(A) ∪ {x}

{φ[y/x], FM(y)[q](A[y/x])} x := M[q] {φ ∧ x = y, A}

(Rule-Seq)
{φ, A} P1 {ψ, B} {ψ, B} P2 {θ, , C}

{φ, A} P1; P2 {θ, C}

(Rule-Cond)
{φ ∧ b, A} P1 {ψ, B} {φ ∧ ¬b, A} P0 {ψ, B}

{φ, A} if b then P1 else P0 {ψ, B}

Simplified proof system
▶ A new idea in formulating proof rule for quantum

measurements.
▶ The proof system can be conveniently combined with classical

first-order logic.

Proof System

(Axiom-Ski) {φ, A} skip {φ, A}
(Axiom-Ass) {φ[e/x], A[e/x]} x := e {φ, A}
(Axiom-Init) {φ, FB[q](A)} q := |0⟩ {φ, A}
(Axiom-Uni)

{
φ, FU(t)[q](A)

}
U(t)[q] {φ, A}

(Axiom-Meas)
y < free(φ) ∪ cv(A) ∪ {x}

{φ[y/x], FM(y)[q](A[y/x])} x := M[q] {φ ∧ x = y, A}

(Rule-Seq)
{φ, A} P1 {ψ, B} {ψ, B} P2 {θ, , C}

{φ, A} P1; P2 {θ, C}

(Rule-Cond)
{φ ∧ b, A} P1 {ψ, B} {φ ∧ ¬b, A} P0 {ψ, B}

{φ, A} if b then P1 else P0 {ψ, B}

Proof System (Continued)

(Rule-Loop-par)
{φ ∧ b, A} P {φ, A}

{φ, A} while b do P {φ ∧ ¬b, A}

(Rule-Conseq)
(φ′, A′) |= (φ, A) {φ, A} P {ψ, B} (ψ, B) |= (ψ′, B′)

{φ′, A′} P {ψ′, B′}

(Rule-Accum1)

{φ, Ai} P {ψi, B} for every i = 1, ..., n
(∀i1, i2)

(
i1 , i2 → ¬(ψi1 ∧ ψi2)

){
φ, 1

n ∑n
i=1 Ai

}
P

{∨n
i=1 ψi, 1

n B
}

(Rule-Accum2)

{φ, Ai} P {ψ, Bi} for every i
0 ≤ pi for every i ∑i pi ≤ 1
{φ, ∑i piAi} P {ψ, ∑i piBi}

[4] M. S. Ying, A practical quantum Hoare logical with classical
variables, I, arXiv 2412.09869.
▶ Proof system for total correctness (omitted)

Outline

1. Introduction

2. QHL without Classical Variables

3. From QHL to Practical QHL

4. Conclusion

Research Topics
▶ (Relative) Completeness?

▶ Applications?
▶ Theorem Provers in Lean, Rocq, Isabelle/HOL?
▶ Extend to parallel and distributed quantum programs?

Research Topics
▶ (Relative) Completeness?
▶ Applications?

▶ Theorem Provers in Lean, Rocq, Isabelle/HOL?
▶ Extend to parallel and distributed quantum programs?

Research Topics
▶ (Relative) Completeness?
▶ Applications?
▶ Theorem Provers in Lean, Rocq, Isabelle/HOL?

▶ Extend to parallel and distributed quantum programs?

Research Topics
▶ (Relative) Completeness?
▶ Applications?
▶ Theorem Provers in Lean, Rocq, Isabelle/HOL?
▶ Extend to parallel and distributed quantum programs?

Related Work
▶ S. -H. Hung, K. Hietala, et al., Quantitative robustness analysis of

quantum programs, POPL 2018.

▶ D. Unruh, Quantum Hoare logic with ghost variables, LICS 2019.
▶ D. Unruh, Quantum relational Hoare logic, POPL 2019.
▶ L. Zhou, et al., An applied quantum Hoare logic, PLDI 2019.
▶ G. Barthe, et al., Relational proofs for quantum programs, POPL

2020.
▶ R. Z. Tao, Y. N. Shi, et al., Gleipnir: Toward practical error

analysis for quantum programs, PLDI 2021.
▶ C. Chareton, et al., An automated deductive verification

framework for circuit-building quantum programs, ESOP 2021.
▶ L. Zhou, et al., A quantum interpretation of bunched logic for

quantum separation logic, LICS 2021
▶ Y. Feng and M. S. Ying, Quantum Hoare logic with classical

variables, TQC 2021.

Related Work
▶ S. -H. Hung, K. Hietala, et al., Quantitative robustness analysis of

quantum programs, POPL 2018.
▶ D. Unruh, Quantum Hoare logic with ghost variables, LICS 2019.

▶ D. Unruh, Quantum relational Hoare logic, POPL 2019.
▶ L. Zhou, et al., An applied quantum Hoare logic, PLDI 2019.
▶ G. Barthe, et al., Relational proofs for quantum programs, POPL

2020.
▶ R. Z. Tao, Y. N. Shi, et al., Gleipnir: Toward practical error

analysis for quantum programs, PLDI 2021.
▶ C. Chareton, et al., An automated deductive verification

framework for circuit-building quantum programs, ESOP 2021.
▶ L. Zhou, et al., A quantum interpretation of bunched logic for

quantum separation logic, LICS 2021
▶ Y. Feng and M. S. Ying, Quantum Hoare logic with classical

variables, TQC 2021.

Related Work
▶ S. -H. Hung, K. Hietala, et al., Quantitative robustness analysis of

quantum programs, POPL 2018.
▶ D. Unruh, Quantum Hoare logic with ghost variables, LICS 2019.
▶ D. Unruh, Quantum relational Hoare logic, POPL 2019.

▶ L. Zhou, et al., An applied quantum Hoare logic, PLDI 2019.
▶ G. Barthe, et al., Relational proofs for quantum programs, POPL

2020.
▶ R. Z. Tao, Y. N. Shi, et al., Gleipnir: Toward practical error

analysis for quantum programs, PLDI 2021.
▶ C. Chareton, et al., An automated deductive verification

framework for circuit-building quantum programs, ESOP 2021.
▶ L. Zhou, et al., A quantum interpretation of bunched logic for

quantum separation logic, LICS 2021
▶ Y. Feng and M. S. Ying, Quantum Hoare logic with classical

variables, TQC 2021.

Related Work
▶ S. -H. Hung, K. Hietala, et al., Quantitative robustness analysis of

quantum programs, POPL 2018.
▶ D. Unruh, Quantum Hoare logic with ghost variables, LICS 2019.
▶ D. Unruh, Quantum relational Hoare logic, POPL 2019.
▶ L. Zhou, et al., An applied quantum Hoare logic, PLDI 2019.

▶ G. Barthe, et al., Relational proofs for quantum programs, POPL
2020.

▶ R. Z. Tao, Y. N. Shi, et al., Gleipnir: Toward practical error
analysis for quantum programs, PLDI 2021.

▶ C. Chareton, et al., An automated deductive verification
framework for circuit-building quantum programs, ESOP 2021.

▶ L. Zhou, et al., A quantum interpretation of bunched logic for
quantum separation logic, LICS 2021

▶ Y. Feng and M. S. Ying, Quantum Hoare logic with classical
variables, TQC 2021.

Related Work
▶ S. -H. Hung, K. Hietala, et al., Quantitative robustness analysis of

quantum programs, POPL 2018.
▶ D. Unruh, Quantum Hoare logic with ghost variables, LICS 2019.
▶ D. Unruh, Quantum relational Hoare logic, POPL 2019.
▶ L. Zhou, et al., An applied quantum Hoare logic, PLDI 2019.
▶ G. Barthe, et al., Relational proofs for quantum programs, POPL

2020.

▶ R. Z. Tao, Y. N. Shi, et al., Gleipnir: Toward practical error
analysis for quantum programs, PLDI 2021.

▶ C. Chareton, et al., An automated deductive verification
framework for circuit-building quantum programs, ESOP 2021.

▶ L. Zhou, et al., A quantum interpretation of bunched logic for
quantum separation logic, LICS 2021

▶ Y. Feng and M. S. Ying, Quantum Hoare logic with classical
variables, TQC 2021.

Related Work
▶ S. -H. Hung, K. Hietala, et al., Quantitative robustness analysis of

quantum programs, POPL 2018.
▶ D. Unruh, Quantum Hoare logic with ghost variables, LICS 2019.
▶ D. Unruh, Quantum relational Hoare logic, POPL 2019.
▶ L. Zhou, et al., An applied quantum Hoare logic, PLDI 2019.
▶ G. Barthe, et al., Relational proofs for quantum programs, POPL

2020.
▶ R. Z. Tao, Y. N. Shi, et al., Gleipnir: Toward practical error

analysis for quantum programs, PLDI 2021.

▶ C. Chareton, et al., An automated deductive verification
framework for circuit-building quantum programs, ESOP 2021.

▶ L. Zhou, et al., A quantum interpretation of bunched logic for
quantum separation logic, LICS 2021

▶ Y. Feng and M. S. Ying, Quantum Hoare logic with classical
variables, TQC 2021.

Related Work
▶ S. -H. Hung, K. Hietala, et al., Quantitative robustness analysis of

quantum programs, POPL 2018.
▶ D. Unruh, Quantum Hoare logic with ghost variables, LICS 2019.
▶ D. Unruh, Quantum relational Hoare logic, POPL 2019.
▶ L. Zhou, et al., An applied quantum Hoare logic, PLDI 2019.
▶ G. Barthe, et al., Relational proofs for quantum programs, POPL

2020.
▶ R. Z. Tao, Y. N. Shi, et al., Gleipnir: Toward practical error

analysis for quantum programs, PLDI 2021.
▶ C. Chareton, et al., An automated deductive verification

framework for circuit-building quantum programs, ESOP 2021.

▶ L. Zhou, et al., A quantum interpretation of bunched logic for
quantum separation logic, LICS 2021

▶ Y. Feng and M. S. Ying, Quantum Hoare logic with classical
variables, TQC 2021.

Related Work
▶ S. -H. Hung, K. Hietala, et al., Quantitative robustness analysis of

quantum programs, POPL 2018.
▶ D. Unruh, Quantum Hoare logic with ghost variables, LICS 2019.
▶ D. Unruh, Quantum relational Hoare logic, POPL 2019.
▶ L. Zhou, et al., An applied quantum Hoare logic, PLDI 2019.
▶ G. Barthe, et al., Relational proofs for quantum programs, POPL

2020.
▶ R. Z. Tao, Y. N. Shi, et al., Gleipnir: Toward practical error

analysis for quantum programs, PLDI 2021.
▶ C. Chareton, et al., An automated deductive verification

framework for circuit-building quantum programs, ESOP 2021.
▶ L. Zhou, et al., A quantum interpretation of bunched logic for

quantum separation logic, LICS 2021

▶ Y. Feng and M. S. Ying, Quantum Hoare logic with classical
variables, TQC 2021.

Related Work
▶ S. -H. Hung, K. Hietala, et al., Quantitative robustness analysis of

quantum programs, POPL 2018.
▶ D. Unruh, Quantum Hoare logic with ghost variables, LICS 2019.
▶ D. Unruh, Quantum relational Hoare logic, POPL 2019.
▶ L. Zhou, et al., An applied quantum Hoare logic, PLDI 2019.
▶ G. Barthe, et al., Relational proofs for quantum programs, POPL

2020.
▶ R. Z. Tao, Y. N. Shi, et al., Gleipnir: Toward practical error

analysis for quantum programs, PLDI 2021.
▶ C. Chareton, et al., An automated deductive verification

framework for circuit-building quantum programs, ESOP 2021.
▶ L. Zhou, et al., A quantum interpretation of bunched logic for

quantum separation logic, LICS 2021
▶ Y. Feng and M. S. Ying, Quantum Hoare logic with classical

variables, TQC 2021.

Related Work
▶ P. Yan, H. R. Jiang and N. K. Yu, On incorrectness logic for

quantum programs, OOPSLA 2022.

▶ X. -B. Le, S. -. Lin, et al., A quantum interpretation of separating
conjunction for local reasoning of quantum programs based on
separation logic, POPL 2022.

▶ J. Y. Liu, et al., Quantum weakest preconditions for reasoning
about expected runtimes of quantum programs, JACM 2025.

▶ Apologies to the many others not mentioned!

Related Work
▶ P. Yan, H. R. Jiang and N. K. Yu, On incorrectness logic for

quantum programs, OOPSLA 2022.
▶ X. -B. Le, S. -. Lin, et al., A quantum interpretation of separating

conjunction for local reasoning of quantum programs based on
separation logic, POPL 2022.

▶ J. Y. Liu, et al., Quantum weakest preconditions for reasoning
about expected runtimes of quantum programs, JACM 2025.

▶ Apologies to the many others not mentioned!

Related Work
▶ P. Yan, H. R. Jiang and N. K. Yu, On incorrectness logic for

quantum programs, OOPSLA 2022.
▶ X. -B. Le, S. -. Lin, et al., A quantum interpretation of separating

conjunction for local reasoning of quantum programs based on
separation logic, POPL 2022.

▶ J. Y. Liu, et al., Quantum weakest preconditions for reasoning
about expected runtimes of quantum programs, JACM 2025.

▶ Apologies to the many others not mentioned!

Related Work
▶ P. Yan, H. R. Jiang and N. K. Yu, On incorrectness logic for

quantum programs, OOPSLA 2022.
▶ X. -B. Le, S. -. Lin, et al., A quantum interpretation of separating

conjunction for local reasoning of quantum programs based on
separation logic, POPL 2022.

▶ J. Y. Liu, et al., Quantum weakest preconditions for reasoning
about expected runtimes of quantum programs, JACM 2025.

▶ Apologies to the many others not mentioned!

Thanks!

	1. Introduction
	2. QHL without Classical Variables
	3. From QHL to Practical QHL
	4. Conclusion

