
A Practical Quantum Hoare Logic

Mingsheng Ying

Centre for Quantum Software and Information
University of Technology Sydney



Outline

1. Introduction

2. QHL without Classical Variables

3. From QHL to Practical QHL

4. Conclusion



Outline

1. Introduction

2. QHL without Classical Variables

3. From QHL to Practical QHL

4. Conclusion



Quantum programming platforms
▶ Qiskit @ IBM Q# @ Microsoft

▶ Cirq @ Google Braket @ AWS
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[1] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A.
Geller, S. Troyer and K. Svore, Quantum programming languages,
Nature Reviews Physics 2020.

How to verify quantum programs?

▶ How can we develop a Hoare-style logic for quantum programs?



Quantum programming platforms
▶ Qiskit @ IBM Q# @ Microsoft
▶ Cirq @ Google Braket @ AWS

▶ TKET @ Quantinuum
▶ ......

[1] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A.
Geller, S. Troyer and K. Svore, Quantum programming languages,
Nature Reviews Physics 2020.

How to verify quantum programs?

▶ How can we develop a Hoare-style logic for quantum programs?



Quantum programming platforms
▶ Qiskit @ IBM Q# @ Microsoft
▶ Cirq @ Google Braket @ AWS
▶ TKET @ Quantinuum

▶ ......

[1] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A.
Geller, S. Troyer and K. Svore, Quantum programming languages,
Nature Reviews Physics 2020.

How to verify quantum programs?

▶ How can we develop a Hoare-style logic for quantum programs?



Quantum programming platforms
▶ Qiskit @ IBM Q# @ Microsoft
▶ Cirq @ Google Braket @ AWS
▶ TKET @ Quantinuum
▶ ......

[1] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A.
Geller, S. Troyer and K. Svore, Quantum programming languages,
Nature Reviews Physics 2020.

How to verify quantum programs?

▶ How can we develop a Hoare-style logic for quantum programs?



Quantum programming platforms
▶ Qiskit @ IBM Q# @ Microsoft
▶ Cirq @ Google Braket @ AWS
▶ TKET @ Quantinuum
▶ ......

[1] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A.
Geller, S. Troyer and K. Svore, Quantum programming languages,
Nature Reviews Physics 2020.

How to verify quantum programs?
▶ How can we develop a Hoare-style logic for quantum programs?



Outline

1. Introduction

2. QHL without Classical Variables

3. From QHL to Practical QHL

4. Conclusion



Programming Language qWhile

S ::= skip | q := |0⟩
|S1; S2

| q := U[q]
| if (□m · M[q] = m → Sm) fi
| while M[q] = 1 do S od



Example: Quantum Walk
▶ Quantum walk on an n-circle with an absorbing boundary at

position 1.

▶ Hc —– 2-dimensional Hilbert space with basis states |L⟩ and |R⟩,
indicating directions.

▶ Hp —– n-dimensional Hilbert space withl basis states
|0⟩, |1⟩, ..., |n − 1⟩, denoting positions.

▶ Quantum walk —– composite system of a coin and a walker
moving on these positions.

▶ State space —– H = Hc ⊗Hp.
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Example: Quantum Walk
▶ Initial state —– |L⟩|0⟩.

▶ Each step of the walk:

1. Measure to see whether it is at position 1 (absorbing boundary). If
“yes”, then terminate; otherwise, continue:

Myes = |1⟩⟨1|, Mno = Ip − Myes = ∑
i,1

|i⟩⟨i|

2. Coin-tossing:

Hadamard operator H =
1√

2

(
1 1
1 −1

)
3. Shift operator:

S =
n−1

∑
i=0

|L⟩⟨L| ⊗ |i ⊖ 1⟩⟨i|+
n−1

∑
i=0

|R⟩⟨R| ⊗ |i ⊕ 1⟩⟨i|.
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Example: Quantum Walk
▶ Difference between quantum walk and classical random walk:

▶ Coin (or direction) variable c can be in a superposition:

|+⟩ = 1√
2
(|L⟩+ |R⟩)

▶ Walker moves left and right “simultaneously”:

1√
2
(|L⟩+ |R⟩)|i⟩ → 1√

2
(|L⟩|i ⊖ 1⟩+ |R⟩|i ⊕ 1⟩).

▶ Quantum walk as quantum program:

QW ≡ c := |L⟩; p := |0⟩; while M[p] = no do c := H[c];
c, p := S[c, p] od
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Operational Semantics

(Sk) ⟨skip, ρ⟩ → ⟨↓, ρ⟩
(Ini) ⟨q := |0⟩, ρ⟩ → ⟨↓, ρ

q
0⟩ (ρ

q
0 = ∑

n
|0⟩q⟨n|ρ|n⟩q⟨0|)

(Uni) ⟨q := U[q], ρ⟩ → ⟨↓, UρU†⟩

(Seq)
⟨S1, ρ⟩ → ⟨S′

1, ρ′⟩
⟨S1; S2, ρ⟩ → ⟨S′

1; S2, ρ′⟩ (↓; S2 = S2)

(IF) ⟨if (□m · M[q] = m → Sm) fi, ρ⟩ → ⟨Sm, MmρM†
m⟩ for each m

(L0) ⟨while M[q] = 1 do S od, ρ⟩ → ⟨↓, M0ρM†
0⟩

(L1) ⟨while M[q] = 1 do S, ρ⟩ → ⟨S; while M[q] = 1 do S, M1ρM†
1⟩



Denotational Semantics

Semantic function of quantum program S:

⟦S⟧ : D(Hall) → D(Hall)

⟦S⟧(ρ) = ∑{|ρ′ : ⟨S, ρ⟩ →∗ ⟨↓, ρ′⟩|} for any input ρ



Quantum Predicates

▶ A quantum predicate is a Hermitian operator (observable) P such
that 0 ⊑ P ⊑ I.

▶ Quantum predicates = Effects (quantum foundations literature).

[2] E. D’Hondt and P. Panangaden, Quantum weakest preconditions,
Math. Struct. in Comput. Sci. 2006.

Quantum Hoare Triples

▶ A correctness formula is a statement of the form:

{P}S{Q}

▶ S is a quantum program
▶ Precondition P and postcondition Q are quantum predicates.
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Total and Partial Correctness
1. {P}S{Q} is true in the sense of total correctness:

|=tot {P}S{Q}

if for all inputs ρ:
tr(Pρ) ≤ tr(Q⟦S⟧(ρ))

2. {P}S{Q} is true in the sense of partial correctness:

|=par {P}S{Q},

if for all inputs ρ:

tr(Pρ) ≤ tr(Q⟦S⟧(ρ)) + [tr(ρ)− tr(⟦S⟧(ρ))]
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Proof System for Partial Correctness

(Axiom-Sk) {P}Skip{P}

(Axiom-Ini)

{
∑
n
|n⟩q⟨0|P|0⟩q⟨n|

}
q := |0⟩{P}

(Axiom-Uni) {U†PU}q := U[q]{P}

(Rule-Seq)
{P}S1{Q} {Q}S2{R}

{P}S1; S2{R}

(Rule-IF)
{Pm}Sm{Q} for all m

{∑m M†
mPmMm}if (□m · M[q] = m → Sm) fi{Q}

(Rule-LP)
{Q}S{M†

0PM0 + M†
1QM1}

{M†
0PM0 + M†

1QM1}while M[q] = 1 do S{P}

(Rule-Ord)
P ⊑ P′ {P′}S{Q′} Q′ ⊑ Q

{P}S{Q}



Soundness and Completeness

Theorem
For any quantum program S and quantum predicates P, Q,

|=par {P}S{Q} if and only if ⊢PD {P}S{Q}.

[3] M. S. Ying, Floyd-Hoare logic for quantum programs, TOPLAS
2011.

▶ Proof system for total correctness (omitted)

QHL Theorem Provers

▶ Isabelle/HOL —- J. Y. Liu et al., CAV’19
▶ CoqQ —- L. Zhou et al., POPL’24
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Limitations of QHL
▶ No classical variables

▶ Curse of dimensionality: a quantum predicate for n qubits is a
2n × 2n matrix —– a bottleneck for scalable verification.

▶ Assertion language?

▶ An assertion for a classical program is a predicate —–
Boolean-valued function, over the state space.

▶ It can be represented by a first-order logical formula —–
constructed from atomic formulas using connectives and
quantifiers.

▶ Often much more economic than as a Boolean-valued function
over the entire state space.

▶ How to define an assertion language for quantum programs?
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Enhanced Expressivity of Programming Language
▶ Classical variables

▶ Quantum arrays
▶ Parameterized quantum gates
▶ Syntax of qWhile+:

P ::= skip | x := e | q := |0⟩
| U(t1, ..., tm)[q1, ..., qn]

| x := M[q1, ..., qn]

| P1; P2 | if b then P1 else P0 | while b do P
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Intuitive Correctness Specifications
▶ Syntax of quantum predicates:

A ::= K(t)[q] | ¬A | A1 ⊗ A2 | F(t)[q]({Ai}).

▶ Hoare triples:
{φ, A} P {ψ, B}

▶ φ, ψ are first-order logical formulas;
▶ A, B are quantum predicates parameterized by classical variables
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Simplified proof system
▶ A new idea in formulating proof rule for quantum

measurements.

▶ The proof system can be conveniently combined with classical
first-order logic.

Proof System

(Axiom-Ski) {φ, A} skip {φ, A}
(Axiom-Ass) {φ[e/x], A[e/x]} x := e {φ, A}
(Axiom-Init) {φ, FB[q](A)} q := |0⟩ {φ, A}
(Axiom-Uni)

{
φ, FU(t)[q](A)

}
U(t)[q] {φ, A}

(Axiom-Meas)
y < free(φ) ∪ cv(A) ∪ {x}

{φ[y/x], FM(y)[q](A[y/x])} x := M[q] {φ ∧ x = y, A}

(Rule-Seq)
{φ, A} P1 {ψ, B} {ψ, B} P2 {θ, , C}

{φ, A} P1; P2 {θ, C}

(Rule-Cond)
{φ ∧ b, A} P1 {ψ, B} {φ ∧ ¬b, A} P0 {ψ, B}

{φ, A} if b then P1 else P0 {ψ, B}
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measurements.
▶ The proof system can be conveniently combined with classical

first-order logic.

Proof System

(Axiom-Ski) {φ, A} skip {φ, A}
(Axiom-Ass) {φ[e/x], A[e/x]} x := e {φ, A}
(Axiom-Init) {φ, FB[q](A)} q := |0⟩ {φ, A}
(Axiom-Uni)

{
φ, FU(t)[q](A)

}
U(t)[q] {φ, A}

(Axiom-Meas)
y < free(φ) ∪ cv(A) ∪ {x}

{φ[y/x], FM(y)[q](A[y/x])} x := M[q] {φ ∧ x = y, A}

(Rule-Seq)
{φ, A} P1 {ψ, B} {ψ, B} P2 {θ, , C}

{φ, A} P1; P2 {θ, C}

(Rule-Cond)
{φ ∧ b, A} P1 {ψ, B} {φ ∧ ¬b, A} P0 {ψ, B}

{φ, A} if b then P1 else P0 {ψ, B}



Proof System (Continued)

(Rule-Loop-par)
{φ ∧ b, A} P {φ, A}

{φ, A} while b do P {φ ∧ ¬b, A}

(Rule-Conseq)
(φ′, A′) |= (φ, A) {φ, A} P {ψ, B} (ψ, B) |= (ψ′, B′)

{φ′, A′} P {ψ′, B′}

(Rule-Accum1)

{φ, Ai} P {ψi, B} for every i = 1, ..., n
(∀i1, i2)

(
i1 , i2 → ¬(ψi1 ∧ ψi2)

){
φ, 1

n ∑n
i=1 Ai

}
P

{∨n
i=1 ψi, 1

n B
}

(Rule-Accum2)

{φ, Ai} P {ψ, Bi} for every i
0 ≤ pi for every i ∑i pi ≤ 1
{φ, ∑i piAi} P {ψ, ∑i piBi}

[4] M. S. Ying, A practical quantum Hoare logical with classical
variables, I, arXiv 2412.09869.
▶ Proof system for total correctness (omitted)
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