A Practical Quantum Hoare Logic

Mingsheng Ying

Centre for Quantum Software and Information University of Technology Sydney

Outline

1. Introduction

2. QHL without Classical Variables

3. From QHL to Practical QHL

4. Conclusion

Outline

1. Introduction

QHL without Classical Variables

3. From QHL to Practical QHL

4. Conclusion

▶ Qiskit @ IBM

Q# @ Microsoft

[1] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A. Geller, S. Troyer and K. Svore, Quantum programming languages, *Nature Reviews Physics* 2020.

▶ Qiskit @ IBM

Q# @ Microsoft

Cirq @ Google

Braket @ AWS

[1] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A. Geller, S. Troyer and K. Svore, Quantum programming languages, *Nature Reviews Physics* 2020.

How to verify quantum programs?

▶ Qiskit @ IBM

Q# @ Microsoft

Cirq @ Google

Braket @ AWS

► TKET @ Quantinuum

[1] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A. Geller, S. Troyer and K. Svore, Quantum programming languages, *Nature Reviews Physics* 2020.

How to verify quantum programs?

▶ Qiskit @ IBM

Q# @ Microsoft

Cirq @ Google

Braket @ AWS

► TKET @ Quantinuum

·.....

[1] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A. Geller, S. Troyer and K. Svore, Quantum programming languages, *Nature Reviews Physics* 2020.

How to verify quantum programs?

▶ Qiskit @ IBM

Q# @ Microsoft

► Cirq @ Google

Braket @ AWS

► TKET @ Quantinuum

·.....

[1] B. Heim, M. Soeken, S. Marshall, C. Granade, M. Roetteler, A. Geller, S. Troyer and K. Svore, Quantum programming languages, *Nature Reviews Physics* 2020.

How to verify quantum programs?

How can we develop a Hoare-style logic for quantum programs?

Outline

1. Introduction

2. QHL without Classical Variables

3. From QHL to Practical QHL

4. Conclusion

Programming Language qWhile

$$\begin{split} S ::= \mathbf{skip} \mid q := |0\rangle \\ \mid S_1; S_2 \\ \mid \overline{q} := U[\overline{q}] \\ \mid \mathbf{if} \ (\Box m \cdot M[\overline{q}] = m \to S_m) \ \mathbf{fi} \\ \mid \mathbf{while} \ M[\overline{q}] = 1 \ \mathbf{do} \ S \ \mathbf{od} \end{split}$$

▶ Quantum walk on an *n*-circle with an absorbing boundary at position 1.

- ▶ Quantum walk on an *n*-circle with an absorbing boundary at position 1.
- ▶ \mathcal{H}_c 2-dimensional Hilbert space with basis states $|L\rangle$ and $|R\rangle$, indicating directions.

- Quantum walk on an *n*-circle with an absorbing boundary at position 1.
- ▶ \mathcal{H}_c 2-dimensional Hilbert space with basis states $|L\rangle$ and $|R\rangle$, indicating directions.
- ▶ \mathcal{H}_p n-dimensional Hilbert space with basis states $|0\rangle, |1\rangle, ..., |n-1\rangle$, denoting positions.

- Quantum walk on an *n*-circle with an absorbing boundary at position 1.
- ▶ \mathcal{H}_c 2-dimensional Hilbert space with basis states $|L\rangle$ and $|R\rangle$, indicating directions.
- ▶ \mathcal{H}_p n-dimensional Hilbert space with basis states $|0\rangle, |1\rangle, ..., |n-1\rangle$, denoting positions.
- Quantum walk composite system of a coin and a walker moving on these positions.

- Quantum walk on an *n*-circle with an absorbing boundary at position 1.
- ▶ \mathcal{H}_c 2-dimensional Hilbert space with basis states $|L\rangle$ and $|R\rangle$, indicating directions.
- ▶ \mathcal{H}_p n-dimensional Hilbert space with basis states $|0\rangle$, $|1\rangle$, ..., $|n-1\rangle$, denoting positions.
- Quantum walk composite system of a coin and a walker moving on these positions.
- ▶ State space $\mathcal{H} = \mathcal{H}_c \otimes \mathcal{H}_p$.

▶ Initial state — $|L\rangle|0\rangle$.

- ▶ Initial state —— $|L\rangle|0\rangle$.
- ► Each step of the walk:

- ▶ Initial state $|L\rangle|0\rangle$.
- ► Each step of the walk:
 - 1. Measure to see whether it is at position 1 (absorbing boundary). If "yes", then terminate; otherwise, continue:

$$M_{yes} = |1\rangle\langle 1|$$
, $M_{no} = I_p - M_{yes} = \sum_{i \neq 1} |i\rangle\langle i|$

- ▶ Initial state $|L\rangle|0\rangle$.
- ► Each step of the walk:
 - 1. Measure to see whether it is at position 1 (absorbing boundary). If "yes", then terminate; otherwise, continue:

$$M_{yes} = |1\rangle\langle 1|$$
, $M_{no} = I_p - M_{yes} = \sum_{i \neq 1} |i\rangle\langle i|$

2. Coin-tossing:

Hadamard operator
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

- ▶ Initial state $|L\rangle|0\rangle$.
- ► Each step of the walk:
 - 1. Measure to see whether it is at position 1 (absorbing boundary). If "yes", then terminate; otherwise, continue:

$$M_{yes} = |1\rangle\langle 1|$$
, $M_{no} = I_p - M_{yes} = \sum_{i \neq 1} |i\rangle\langle i|$

2. Coin-tossing:

Hadamard operator
$$H = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$$

3. Shift operator:

$$S = \sum_{i=0}^{n-1} |L\rangle\langle L| \otimes |i \ominus 1\rangle\langle i| + \sum_{i=0}^{n-1} |R\rangle\langle R| \otimes |i \oplus 1\rangle\langle i|.$$

▶ Difference between quantum walk and classical random walk:

- ▶ Difference between quantum walk and classical random walk:
 - Coin (or direction) variable *c* can be in a superposition:

$$|+\rangle = \frac{1}{\sqrt{2}}(|L\rangle + |R\rangle)$$

- ▶ Difference between quantum walk and classical random walk:
 - ► Coin (or direction) variable *c* can be in a superposition:

$$|+\rangle = \frac{1}{\sqrt{2}}(|L\rangle + |R\rangle)$$

► Walker moves left and right "simultaneously":

$$\frac{1}{\sqrt{2}}(|L\rangle + |R\rangle)|i\rangle \rightarrow \frac{1}{\sqrt{2}}(|L\rangle|i\ominus 1\rangle + |R\rangle|i\ominus 1\rangle).$$

- ▶ Difference between quantum walk and classical random walk:
 - Coin (or direction) variable *c* can be in a superposition:

$$|+\rangle = \frac{1}{\sqrt{2}}(|L\rangle + |R\rangle)$$

Walker moves left and right "simultaneously":

$$\frac{1}{\sqrt{2}}(|L\rangle + |R\rangle)|i\rangle \rightarrow \frac{1}{\sqrt{2}}(|L\rangle|i\ominus 1\rangle + |R\rangle|i\ominus 1\rangle).$$

▶ Quantum walk as quantum program:

$$QW \equiv c := |L\rangle; p := |0\rangle;$$
 while $M[p] = no$ do $c := H[c];$ $c, p := S[c, p]$ od

Operational Semantics

$$(Sk) \langle \mathbf{skip}, \rho \rangle \to \langle \downarrow, \rho \rangle$$

$$(Ini) \langle q := |0\rangle, \rho \rangle \to \langle \downarrow, \rho_0^q \rangle \qquad (\rho_0^q = \sum_n |0\rangle_q \langle n|\rho|n\rangle_q \langle 0|)$$

$$(Uni) \langle \overline{q} := U[\overline{q}], \rho \rangle \to \langle \downarrow, U\rho U^{\dagger} \rangle$$

$$(Seq) \frac{\langle S_1, \rho \rangle \to \langle S_1', \rho' \rangle}{\langle S_1; S_2, \rho \rangle \to \langle S_1'; S_2, \rho' \rangle} \qquad (\downarrow; S_2 = S_2)$$

$$(IF) \langle \mathbf{if} \ (\Box m \cdot M[\overline{q}] = m \to S_m) \ \mathbf{fi}, \rho \rangle \to \langle S_m, M_m \rho M_m^{\dagger} \rangle \text{ for each } m$$

$$(L0) \langle \mathbf{while} \ M[\overline{q}] = 1 \ \mathbf{do} \ S \ \mathbf{od}, \rho \rangle \to \langle \downarrow, M_0 \rho M_0^{\dagger} \rangle$$

$$(L1) \langle \mathbf{while} \ M[\overline{q}] = 1 \ \mathbf{do} \ S, \rho \rangle \to \langle S; \mathbf{while} \ M[\overline{q}] = 1 \ \mathbf{do} \ S, M_1 \rho M_1^{\dagger} \rangle$$

Denotational Semantics

Semantic function of quantum program *S*:

$$\begin{split} & \llbracket S \rrbracket : \mathcal{D}(\mathcal{H}_{\text{all}}) \to \mathcal{D}(\mathcal{H}_{\text{all}}) \\ & \llbracket S \rrbracket(\rho) = \sum \{ |\rho' : \langle S, \rho \rangle \to^* \langle \downarrow, \rho' \rangle | \} \text{ for any input } \rho \end{split}$$

▶ A *quantum predicate* is a Hermitian operator (observable) P such that $0 \sqsubseteq P \sqsubseteq I$.

[2] E. D'Hondt and P. Panangaden, Quantum weakest preconditions, *Math. Struct. in Comput. Sci.* 2006.

- ▶ A *quantum predicate* is a Hermitian operator (observable) P such that $0 \sqsubseteq P \sqsubseteq I$.
- Quantum predicates = Effects (quantum foundations literature).

[2] E. D'Hondt and P. Panangaden, Quantum weakest preconditions, *Math. Struct. in Comput. Sci.* 2006.

Quantum Hoare Triples

- ▶ A *quantum predicate* is a Hermitian operator (observable) P such that $0 \sqsubseteq P \sqsubseteq I$.
- Quantum predicates = Effects (quantum foundations literature).

[2] E. D'Hondt and P. Panangaden, Quantum weakest preconditions, *Math. Struct. in Comput. Sci.* 2006.

Quantum Hoare Triples

► A *correctness formula* is a statement of the form:

$${P}S{Q}$$

- ▶ A *quantum predicate* is a Hermitian operator (observable) P such that $0 \sqsubseteq P \sqsubseteq I$.
- Quantum predicates = Effects (quantum foundations literature).

[2] E. D'Hondt and P. Panangaden, Quantum weakest preconditions, *Math. Struct. in Comput. Sci.* 2006.

Quantum Hoare Triples

► A *correctness formula* is a statement of the form:

$${P}S{Q}$$

► *S* is a quantum program

- ▶ A *quantum predicate* is a Hermitian operator (observable) P such that $0 \sqsubseteq P \sqsubseteq I$.
- Quantum predicates = Effects (quantum foundations literature).

[2] E. D'Hondt and P. Panangaden, Quantum weakest preconditions, *Math. Struct. in Comput. Sci.* 2006.

Quantum Hoare Triples

► A *correctness formula* is a statement of the form:

$${P}S{Q}$$

- ► *S* is a quantum program
- ▶ Precondition *P* and postcondition *Q* are quantum predicates.

Total and Partial Correctness

1. $\{P\}S\{Q\}$ is true in the sense of *total correctness*:

$$\models_{\mathsf{tot}} \{P\}S\{Q\}$$

if for all inputs ρ :

$$tr(P\rho) \leq tr(Q[S](\rho))$$

Total and Partial Correctness

1. $\{P\}S\{Q\}$ is true in the sense of *total correctness*:

$$\models_{\mathsf{tot}} \{P\}S\{Q\}$$

if for all inputs ρ :

$$tr(P\rho) \le tr(Q[S](\rho))$$

2. $\{P\}S\{Q\}$ is true in the sense of *partial correctness*:

$$\models_{\mathsf{par}} \{P\}S\{Q\},$$

if for all inputs ρ :

$$tr(P\rho) \leq tr(Q[S](\rho)) + [tr(\rho) - tr([S](\rho))]$$

Proof System for Partial Correctness

$$\begin{array}{ll} \text{(Axiom-Sk)} & \{P\} \textbf{Skip} \{P\} \\ \text{(Axiom-Ini)} & \left\{ \sum_{n} |n\rangle_{q} \langle 0|P|0\rangle_{q} \langle n| \right\} q := |0\rangle \{P\} \\ \text{(Axiom-Uni)} & \{U^{\dagger}PU\} \overline{q} := U[\overline{q}] \{P\} \\ \text{(Rule-Seq)} & \frac{\{P\}S_{1}\{Q\} - \{Q\}S_{2}\{R\}}{\{P\}S_{1};S_{2}\{R\}} \\ \text{(Rule-IF)} & \frac{\{P_{m}\}S_{m}\{Q\} \text{ for all } m}{\{\sum_{m} M_{m}^{\dagger}P_{m}M_{m}\} \textbf{if } (\square m \cdot M[\overline{q}] = m \rightarrow S_{m}) \textbf{ fi} \{Q\}} \\ \text{(Rule-LP)} & \frac{\{Q\}S\{M_{0}^{\dagger}PM_{0} + M_{1}^{\dagger}QM_{1}\}}{\{M_{0}^{\dagger}PM_{0} + M_{1}^{\dagger}QM_{1}\} \textbf{while } M[\overline{q}] = 1 \textbf{ do } S\{P\}} \\ \text{(Rule-Ord)} & \frac{P \sqsubseteq P' - \{P'\}S\{Q'\} - Q' \sqsubseteq Q}{\{P\}S\{O\}} \\ \end{array}$$

Soundness and Completeness

Theorem

For any quantum program S and quantum predicates P, Q,

$$\models_{par} \{P\}S\{Q\}$$
 if and only if $\vdash_{PD} \{P\}S\{Q\}$.

[3] M. S. Ying, Floyd-Hoare logic for quantum programs, *TOPLAS* 2011.

Soundness and Completeness

Theorem

For any quantum program S and quantum predicates P, Q,

$$\models_{par} \{P\}S\{Q\}$$
 if and only if $\vdash_{PD} \{P\}S\{Q\}$.

[3] M. S. Ying, Floyd-Hoare logic for quantum programs, *TOPLAS* 2011.

► Proof system for total correctness (omitted)

QHL Theorem Provers

Soundness and Completeness

Theorem

For any quantum program S and quantum predicates P, Q,

$$\models_{par} \{P\}S\{Q\}$$
 if and only if $\vdash_{PD} \{P\}S\{Q\}$.

[3] M. S. Ying, Floyd-Hoare logic for quantum programs, *TOPLAS* 2011.

► Proof system for total correctness (omitted)

QHL Theorem Provers

► Isabelle/HOL — J. Y. Liu et al., *CAV*′19

Soundness and Completeness

Theorem

For any quantum program S and quantum predicates P, Q,

$$\models_{par} \{P\}S\{Q\}$$
 if and only if $\vdash_{PD} \{P\}S\{Q\}$.

[3] M. S. Ying, Floyd-Hoare logic for quantum programs, *TOPLAS* 2011.

► Proof system for total correctness (omitted)

QHL Theorem Provers

- ► Isabelle/HOL J. Y. Liu et al., *CAV*′19
- ► CoqQ L. Zhou et al., POPL'24

Outline

1. Introduction

2. QHL without Classical Variables

3. From QHL to Practical QHL

4. Conclusion

► No classical variables

- No classical variables
- Curse of dimensionality: a quantum predicate for n qubits is a $2^n \times 2^n$ matrix a bottleneck for scalable verification.

- No classical variables
- ► Curse of dimensionality: a quantum predicate for n qubits is a $2^n \times 2^n$ matrix a bottleneck for scalable verification.
- Assertion language?

- No classical variables
- ► Curse of dimensionality: a quantum predicate for n qubits is a $2^n \times 2^n$ matrix a bottleneck for scalable verification.
- Assertion language?
 - An assertion for a classical program is a predicate Boolean-valued function, over the state space.

- No classical variables
- ► Curse of dimensionality: a quantum predicate for n qubits is a $2^n \times 2^n$ matrix a bottleneck for scalable verification.
- Assertion language?
 - An assertion for a classical program is a predicate Boolean-valued function, over the state space.
 - It can be represented by a first-order logical formula constructed from atomic formulas using connectives and quantifiers.

- No classical variables
- ► Curse of dimensionality: a quantum predicate for n qubits is a $2^n \times 2^n$ matrix a bottleneck for scalable verification.
- Assertion language?
 - An assertion for a classical program is a predicate Boolean-valued function, over the state space.
 - It can be represented by a first-order logical formula constructed from atomic formulas using connectives and quantifiers.
 - Often much more economic than as a Boolean-valued function over the entire state space.

- No classical variables
- ► Curse of dimensionality: a quantum predicate for n qubits is a $2^n \times 2^n$ matrix a bottleneck for scalable verification.
- Assertion language?
 - An assertion for a classical program is a predicate Boolean-valued function, over the state space.
 - It can be represented by a first-order logical formula constructed from atomic formulas using connectives and quantifiers.
 - ▶ Often much more economic than as a Boolean-valued function over the entire state space.
 - ► How to define an assertion language for quantum programs?

Classical variables

- Classical variables
- Quantum arrays

- Classical variables
- Quantum arrays
- ► Parameterized quantum gates

- Classical variables
- Quantum arrays
- Parameterized quantum gates
- ► Syntax of **qWhile**⁺:

```
P ::= \mathbf{skip} \mid x := e \mid q := |0\rangle
\mid U(t_1, ..., t_m)[q_1, ..., q_n]
\mid x := M[q_1, ..., q_n]
\mid P_1; P_2 \mid \mathbf{if} \ b \ \mathbf{then} \ P_1 \ \mathbf{else} \ P_0 \mid \mathbf{while} \ b \ \mathbf{do} \ P
```

► Syntax of quantum predicates:

$$A ::= K(\overline{t})[\overline{q}] \mid \neg A \mid A_1 \otimes A_2 \mid F(\overline{t})[\overline{q}](\{A_i\}).$$

► Syntax of quantum predicates:

$$A ::= K(\overline{t})[\overline{q}] \mid \neg A \mid A_1 \otimes A_2 \mid F(\overline{t})[\overline{q}](\{A_i\}).$$

► Hoare triples:

$$\{\varphi,A\}\;P\;\{\psi,B\}$$

► Syntax of quantum predicates:

$$A ::= K(\overline{t})[\overline{q}] \mid \neg A \mid A_1 \otimes A_2 \mid F(\overline{t})[\overline{q}](\{A_i\}).$$

► Hoare triples:

$$\{\varphi,A\}\;P\;\{\psi,B\}$$

• φ , ψ are first-order logical formulas;

Syntax of quantum predicates:

$$A ::= K(\overline{t})[\overline{q}] \mid \neg A \mid A_1 \otimes A_2 \mid F(\overline{t})[\overline{q}](\{A_i\}).$$

► Hoare triples:

$$\{\varphi,A\} P \{\psi,B\}$$

- φ , ψ are first-order logical formulas;
- ► *A*, *B* are quantum predicates parameterized by classical variables

Simplified proof system

► A new idea in formulating proof rule for quantum measurements.

Simplified proof system

- ► A new idea in formulating proof rule for quantum measurements.
- The proof system can be conveniently combined with classical first-order logic.

Proof System

```
(Axiom-Ski) \{ \varphi, A \}  skip \{ \varphi, A \}
(Axiom-Ass) \{\varphi[e/x], A[e/x]\}\ x := e\{\varphi, A\}
(Axiom-Init) \{\varphi, F_B[q](A)\}\ q := |0\rangle \{\varphi, A\}
(Axiom-Uni) \{\varphi, F_U(\overline{t})[\overline{q}](A)\}\ U(\overline{t})[\overline{q}] \{\varphi, A\}
                                                 y \notin free(\varphi) \cup cv(A) \cup \{x\}
(Axiom-Meas)
                          \overline{\{\varphi[y/x], F_M(y)[\overline{q}](A[y/x])\}} \ x := M[\overline{q}] \{\varphi \land x = y, A\}
                        \{\varphi, A\} P_1 \{\psi, B\} \{\psi, B\} P_2 \{\theta, C\}
(Rule-Seg)
                                       \{\varphi, A\} P_1; P_2 \{\theta, C\}
                           \{\varphi \land b, A\} P_1 \{\psi, B\} \qquad \{\varphi \land \neg b, A\} P_0 \{\psi, B\}
(Rule-Cond)
                                      \{\varphi,A\} if b then P_1 else P_0 \{\psi,B\}
```

Proof System (Continued)

$$(Rule-Loop-par) \quad \frac{\{\varphi \land b,A\} \ P \ \{\varphi,A\}}{\{\varphi,A\} \ \textbf{while} \ b \ \textbf{do} \ P \ \{\varphi \land \neg b,A\}}$$

$$(Rule-Conseq) \quad \frac{(\varphi',A') \models (\varphi,A) \ \{\varphi,A\} \ P \ \{\psi,B\} \ (\psi,B) \models (\psi',B')}{\{\varphi',A'\} \ P \ \{\psi',B'\}}$$

$$(Rule-Accum1) \quad \frac{(\forall i_1,i_2) \ (i_1 \neq i_2 \rightarrow \neg(\psi_{i_1} \land \psi_{i_2}))}{\{\varphi,\frac{1}{n}\sum_{i=1}^n A_i\} \ P \ \{\bigvee_{i=1}^n \psi_i,\frac{1}{n}B\}}$$

$$(Rule-Accum2) \quad \frac{(\varphi_i,A) \ P \ \{\psi_i,B\} \ \text{for every } i}{\{\varphi,A_i\} \ P \ \{\psi_i,B\} \ \text{for every } i}$$

$$\frac{0 \leq p_i \ \text{for every } i}{\{\varphi,\sum_i p_iA_i\} \ P \ \{\psi,\sum_i p_iB_i\}}$$

[4] M. S. Ying, A practical quantum Hoare logical with classical variables, I, *arXiv* 2412.09869.

► Proof system for total correctness (omitted)

Outline

1. Introduction

2. QHL without Classical Variables

3. From QHL to Practical QHL

4. Conclusion

► (Relative) Completeness?

- ► (Relative) Completeness?
- ► Applications?

- ► (Relative) Completeness?
- ► Applications?
- ► Theorem Provers in Lean, Rocq, Isabelle/HOL?

- ► (Relative) Completeness?
- ► Applications?
- ► Theorem Provers in Lean, Rocq, Isabelle/HOL?
- Extend to parallel and distributed quantum programs?

► S. -H. Hung, K. Hietala, et al., Quantitative robustness analysis of quantum programs, *POPL* 2018.

- ▶ S. -H. Hung, K. Hietala, et al., Quantitative robustness analysis of quantum programs, *POPL* 2018.
- D. Unruh, Quantum Hoare logic with ghost variables, LICS 2019.

- ► S. -H. Hung, K. Hietala, et al., Quantitative robustness analysis of quantum programs, *POPL* 2018.
- D. Unruh, Quantum Hoare logic with ghost variables, LICS 2019.
- ▶ D. Unruh, Quantum relational Hoare logic, *POPL* 2019.

- S. -H. Hung, K. Hietala, et al., Quantitative robustness analysis of quantum programs, POPL 2018.
- ▶ D. Unruh, Quantum Hoare logic with ghost variables, *LICS* 2019.
- D. Unruh, Quantum relational Hoare logic, POPL 2019.
- L. Zhou, et al., An applied quantum Hoare logic, *PLDI* 2019.

- S.-H. Hung, K. Hietala, et al., Quantitative robustness analysis of quantum programs, POPL 2018.
- ▶ D. Unruh, Quantum Hoare logic with ghost variables, *LICS* 2019.
- ▶ D. Unruh, Quantum relational Hoare logic, *POPL* 2019.
- L. Zhou, et al., An applied quantum Hoare logic, *PLDI* 2019.
- ► G. Barthe, et al., Relational proofs for quantum programs, *POPL* 2020.

- S. -H. Hung, K. Hietala, et al., Quantitative robustness analysis of quantum programs, POPL 2018.
- ▶ D. Unruh, Quantum Hoare logic with ghost variables, *LICS* 2019.
- ▶ D. Unruh, Quantum relational Hoare logic, *POPL* 2019.
- L. Zhou, et al., An applied quantum Hoare logic, *PLDI* 2019.
- G. Barthe, et al., Relational proofs for quantum programs, POPL 2020.
- ▶ R. Z. Tao, Y. N. Shi, et al., Gleipnir: Toward practical error analysis for quantum programs, *PLDI* 2021.

- ► S. -H. Hung, K. Hietala, et al., Quantitative robustness analysis of quantum programs, *POPL* 2018.
- ▶ D. Unruh, Quantum Hoare logic with ghost variables, *LICS* 2019.
- ▶ D. Unruh, Quantum relational Hoare logic, *POPL* 2019.
- L. Zhou, et al., An applied quantum Hoare logic, *PLDI* 2019.
- G. Barthe, et al., Relational proofs for quantum programs, POPL 2020.
- ▶ R. Z. Tao, Y. N. Shi, et al., Gleipnir: Toward practical error analysis for quantum programs, *PLDI* 2021.
- ► C. Chareton, et al., An automated deductive verification framework for circuit-building quantum programs, *ESOP* 2021.

- S.-H. Hung, K. Hietala, et al., Quantitative robustness analysis of quantum programs, POPL 2018.
- ▶ D. Unruh, Quantum Hoare logic with ghost variables, *LICS* 2019.
- ▶ D. Unruh, Quantum relational Hoare logic, *POPL* 2019.
- L. Zhou, et al., An applied quantum Hoare logic, *PLDI* 2019.
- G. Barthe, et al., Relational proofs for quantum programs, POPL 2020.
- ▶ R. Z. Tao, Y. N. Shi, et al., Gleipnir: Toward practical error analysis for quantum programs, *PLDI* 2021.
- ► C. Chareton, et al., An automated deductive verification framework for circuit-building quantum programs, *ESOP* 2021.
- L. Zhou, et al., A quantum interpretation of bunched logic for quantum separation logic, LICS 2021

- S.-H. Hung, K. Hietala, et al., Quantitative robustness analysis of quantum programs, POPL 2018.
- ▶ D. Unruh, Quantum Hoare logic with ghost variables, *LICS* 2019.
- ▶ D. Unruh, Quantum relational Hoare logic, *POPL* 2019.
- L. Zhou, et al., An applied quantum Hoare logic, *PLDI* 2019.
- G. Barthe, et al., Relational proofs for quantum programs, POPL 2020.
- ▶ R. Z. Tao, Y. N. Shi, et al., Gleipnir: Toward practical error analysis for quantum programs, *PLDI* 2021.
- ► C. Chareton, et al., An automated deductive verification framework for circuit-building quantum programs, *ESOP* 2021.
- L. Zhou, et al., A quantum interpretation of bunched logic for quantum separation logic, LICS 2021
- ➤ Y. Feng and M. S. Ying, Quantum Hoare logic with classical variables, *TQC* 2021.

▶ P. Yan, H. R. Jiang and N. K. Yu, On incorrectness logic for quantum programs, *OOPSLA* 2022.

- ▶ P. Yan, H. R. Jiang and N. K. Yu, On incorrectness logic for quantum programs, *OOPSLA* 2022.
- ➤ X. -B. Le, S. -. Lin, et al., A quantum interpretation of separating conjunction for local reasoning of quantum programs based on separation logic, *POPL* 2022.

- ▶ P. Yan, H. R. Jiang and N. K. Yu, On incorrectness logic for quantum programs, *OOPSLA* 2022.
- ➤ X. -B. Le, S. -. Lin, et al., A quantum interpretation of separating conjunction for local reasoning of quantum programs based on separation logic, *POPL* 2022.
- ▶ J. Y. Liu, et al., Quantum weakest preconditions for reasoning about expected runtimes of quantum programs, *JACM* 2025.

- ▶ P. Yan, H. R. Jiang and N. K. Yu, On incorrectness logic for quantum programs, *OOPSLA* 2022.
- ➤ X. -B. Le, S. -. Lin, et al., A quantum interpretation of separating conjunction for local reasoning of quantum programs based on separation logic, *POPL* 2022.
- ▶ J. Y. Liu, et al., Quantum weakest preconditions for reasoning about expected runtimes of quantum programs, *JACM* 2025.
- ► Apologies to the many others not mentioned!

Thanks!