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Motivation

• quantum computers are very noisy

• algorithms do not behave as expected

• better performance is necessary for achieving fault-tolerant
quantum computing

“Automatically synthesize quantum algorithms
considering a concrete hardware specification”
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Quantum Algorithm

QI 2 noise
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Hardware Specification and Semantics

Hardware Specification H

Unitary Instructions
H : UnitaryIns→ LinearMap︸        ︷︷        ︸

quantum channel

Measurement Instructions
H : MeasIns→ (Bit→ D(Bit))︸                ︷︷                ︸

measurement channel

⇓ hardware semantics

[[H]] : HybridState × QuantumIns→ D(HybridState)
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Related Works

Quantum synthesis approaches remain mostly noise
agnostic [Xu et al., 2023, Kusyk et al., 2021, Guo and Wang, 2024, Kang and Oh, 2023].

Some efforts towards noise aware synthesis:

pulse-level optimization [Lin et al., 2022, Voichick et al., 2025]

machine learning heuristics [Charrwi et al., 2024, Kikuchi et al., 2023]

noise-aware qubit mapping [Murali et al., 2019, Sun et al., 2025, Sivarajah et al., 2020]

Stochastic models:

Quantum Markov Decision processes have been used to
approximate one-qubit unitaries via Hilbert Space
discretization [Alam et al., 2023] or to synthesize algorithms with a
specific structure [Ming-Sheng et al., 2021, Ying and Ying, 2018].
Quantum Observable Markov Decision Processes
(QOMDPs) [Barry et al., 2014] introduce stochastic transitions via
Kraus operators.
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Quantitative Synthesis Problem for Quantum Algorithms

We are given:

hardware specification H

guard G : HybridState→ 2I/∅

set T of target states

initial state s∗

horizon k

finite set I of instructions

What is the algorithm for H

that with the
highest probability

satisfies G and reaches T

starting from s∗

using at most k instructions
from I?
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Partially Observable Markov Decision Process (POMDP)

P = ⟨S,A ,O, δ : S × A → D(S), γ : S → O⟩

τ∗ : (O · A)∗ · O → D(A)
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Experiments
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Parity-bitflip problem: setup

Hilbert space H8

Initial uniform distribution
over Bell states

Target states are hybrid states
with an even parity Bell state.

44 hardware specifications

225 embeddings

Horizons 4 through 7

Guards on measurements

CX(0,2);

CX(1,2);

m = 0;

for _ in [0..meas_count]:

m+= MEASURE(2);

if m >= ceil(meas_count/2):

X(0)
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Parity-bitflip problem (results)

IPMA Instruction Set

{CX(0,2), CX(1,2), X(0),

measure(2)}

Maximum improvement achieved:
9.8%

Synthesized 27 different
algorithms

Repeating blocks of CX gates is
optimal when there is a high
measurement success probability.

Performing more measurements is
not always better.

CX+H Instruction Set

{H(1), H(2), CX(2,1),

CX(0,1), measure(2)}

Maximum improvement
achieved: 34.07% (from
61.13% to 95.2%)

Synthesized 4 different
algorithms.

Only found algorithms at
horizon 6.

Optimal algorithms using
up to 4 CX gates.
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Parity-bitflip problem (samples)

CX(0,2);

CX(1,2);

if MEASURE(2) == 0:

CX(0,2);

CX(1,2);

if MEASURE(2) == 1:

if MEASURE(2) == 1:

X(0)

else:

CX(0,2);

CX(1,2);

if MEASURE(2) == 0:

X(0)

else:

CX(0,2);

CX(1,2);

if MEASURE(2) == 0:

if MEASURE(2) == 0:

X(0)

else:

if MEASURE(2) == 0:

X(0)

else:

CX(0,2);

CX(1,2);

if MEASURE(2) == 0:

X(0)

H(2);

CX(2,1);

H(1);

CX(0,1);

H(2);

CX(2,1);

MEASURE(2);
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Qubit-reset problem: setup

Hilbert space H2

Initial uniform distribution
over |0⟩ and |1⟩

Target states is any hybrid
state with quantum state |0⟩.

44 hardware
specifications

156 embeddings

Horizons 2 through 7

No guards

m = 0;

for _ in [0..meas_count]:

m+= MEASURE(0);

if m >= ceil(meas_count/2):

X(0)
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Qubit-reset problem: results

{X(0), measure(0)}

Maximum improvement
achieved: 13.5% (from 61.9%
to 75.4%)

Synthesized 42 different
algorithms.

Several optimal algorithms that
exploit the higher accuracy of
measurements for one of the
basis states.

For some hardware
specifications, we provide
guarantees above 99.999%.

if MEASURE(0) == 0:

if MEASURE(0) == 0:

if MEASURE(0) == 0:

if MEASURE(0) == 1:

X(0);

else:

X(0);

else:

X(0);

if MEASURE(0) == 1:

X(0);

else:

if MEASURE(0) == 0:

X(0);

if MEASURE(0) == 1:

X(0);

else:

X(0);
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GHZ state preparation problem: setup

Hilbert space H8

Initial state is |000⟩.

Target states is any hybrid state with
quantum state 1√

2
(|000⟩+ |111⟩).

44 hardware specifications

1275 embeddings

A single instruction set per embedding

Horizon 3

No guards

H(0);

CX(0,1);

CX(1,2);
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GHZ state preparation problem: results

Goal: compare against Qiskit
transpiler

use optimization level 2 and 3

Average improvement is of
5.72% and 7.48% respectively.

Highest improvement: 92%
(6.1% vs. 98.1%)

In 12 quantum hardware the
improvement is at least 2.5%

H(1);

CX(1,0);

CX(1,2);
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Conclusion

We presented a framework that incorporates hardware
specifications into the synthesis process.

We target the synthesis process of practical algorithms while
providing provable guarantees about their performance.

Our results highlight the need for hardware-specific
algorithms.
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