

Égalité Fraternité

Finding Photonics Circuits with SMT Solvers

Marco Lewis Benoît Valiron

Université Paris-Saclay, CNRS, CentraleSupélec, ENS Paris-Saclay, Inria, Laboratoire Méthodes Formelles

July 21, 2025

ARCHITECTURE OF AN OPTICAL QUANTUM COMPUTER.

From Quandela Medium Article: How to do computations on an optical quantum computer?

Wires, Phase Shifters, and Beam Splitters

 $\cdots \bigcirc \bigcirc \bigcirc \bigcirc \rightarrow$

... ○ ○ ○ →

:

Wires, Phase Shifters, and Beam Splitters

 $\cdots \hspace{0.1cm} \bigcirc \hspace{0.1cm} \bigcirc \hspace{0.1cm} \rightarrow \hspace{0.1cm}$

:

$$e^{\mathrm{i}\psi}$$
 ψ

Wires, Phase Shifters, and Beam Splitters

$$\cdots \hspace{0.1cm} \bigcirc \hspace{0.1cm} \bigcirc \hspace{0.1cm} \longrightarrow \hspace{0.1cm}$$

:

$$\boldsymbol{e^{\mathrm{i}\,\psi}}$$

$$\begin{pmatrix} \cos(\theta) & ie^{-i\phi}\sin(\theta) \\ ie^{i\phi}\sin(\theta) & \cos(\theta) \end{pmatrix}$$

Photonics Circuits and Transfer Matrix

Photonics Circuits and Transfer Matrix

$$\iff$$

$$\hat{U} = egin{pmatrix} u_{11} & u_{12} & \dots & u_{16} \\ u_{21} & u_{22} & \dots & u_{26} \\ \vdots & \vdots & \ddots & \vdots \\ u_{61} & u_{62} & \dots & u_{66} \end{pmatrix}$$

Standard Fock States

$$|n_1,n_2,\ldots,n_m\rangle_{\mathcal{F}}$$

Standard Fock States

$$|n_1, n_2, \ldots, n_m\rangle_{\mathcal{F}}$$

Fock Basis

$$\mathcal{B}_{n,m} = \left\{ \left. \left| n_1, n_2, \dots, n_m \right\rangle_{\mathcal{F}} : \sum_i n_i = n \right\} \right.$$

Standard Fock States

$$|n_1, n_2, \ldots, n_m\rangle_{\mathcal{F}}$$

Fock Basis

$$\mathcal{B}_{n,m} = \left\{ \left. \left| n_1, n_2, \ldots, n_m \right\rangle_{\mathcal{F}} : \sum_i n_i = n \right\} \right.$$

 \hat{U} acts on single photons/creation operators $(\hat{a}_i^{\dagger} | \dots n_i \dots)_{\mathcal{F}} \to \sqrt{n_i + 1} | \dots n_i + 1 \dots)_{\mathcal{F}})$

Standard Fock States

$$|n_1, n_2, \ldots, n_m\rangle_{\mathcal{F}}$$

Fock Basis

$$\mathcal{B}_{n,m} = \left\{ \left. \left| n_1, n_2, \dots, n_m \right\rangle_{\mathcal{F}} : \sum_i n_i = n \right\} \right.$$

 \hat{U} acts on single photons/creation operators $(\hat{a}_i^{\dagger} | \dots n_i \dots \rangle_{\mathcal{F}} \to \sqrt{n_i + 1} | \dots n_i + 1 \dots \rangle_{\mathcal{F}})$ $(\hat{U})_{\mathcal{F}}$ acts on Fock basis $\mathcal{B}_{n,m}$

$$(\hat{U})_{\mathcal{F}} | n_1, \ldots, n_m \rangle_{\mathcal{F}} = \prod_{i=1}^m \frac{1}{\sqrt{n_i !}} \Big(\sum_{i=1}^m \hat{U}_{ij} \hat{a}_i^{\dagger} \Big)^{n_j} | 0, \ldots, 0 \rangle_{\mathcal{F}}$$

$$|1,0\rangle_{\mathcal{F}}$$

$$|1,1\rangle_{\mathcal{F}}$$

$$\hat{U} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

$$\hat{U} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

$$|1,0
angle_{\mathcal{F}}
ightarrow rac{1}{\sqrt{2}} |1,0
angle_{\mathcal{F}} - rac{1}{\sqrt{2}} |0,1
angle_{\mathcal{F}}$$

$$|1,1\rangle_{\mathcal{F}}$$

$$\hat{U} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

$$|1,0
angle_{\mathcal{F}}
ightarrow rac{1}{\sqrt{2}} |1,0
angle_{\mathcal{F}} - rac{1}{\sqrt{2}} |0,1
angle_{\mathcal{F}}$$

$$|1,1\rangle_{\mathcal{F}} \rightarrow \frac{1}{2} \, |1,1\rangle_{\mathcal{F}} + \frac{\sqrt{2}}{2} \, |2,0\rangle_{\mathcal{F}} - \frac{\sqrt{2}}{2} \, |0,2\rangle_{\mathcal{F}} - \frac{1}{2} \, |1,1\rangle_{\mathcal{F}}$$

$$\hat{U} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

$$|1,0
angle_{\mathcal{F}}
ightarrow rac{1}{\sqrt{2}} |1,0
angle_{\mathcal{F}} - rac{1}{\sqrt{2}} |0,1
angle_{\mathcal{F}}$$

$$\begin{split} |1,1\rangle_{\mathcal{F}} &\to \frac{1}{2} |1,1\rangle_{\mathcal{F}} + \frac{\sqrt{2}}{2} |2,0\rangle_{\mathcal{F}} - \frac{\sqrt{2}}{2} |0,2\rangle_{\mathcal{F}} - \frac{1}{2} |1,1\rangle_{\mathcal{F}} \\ &= \frac{1}{\sqrt{2}} |2,0\rangle_{\mathcal{F}} - \frac{1}{\sqrt{2}} |0,2\rangle_{\mathcal{F}} \end{split}$$

 \bigcirc \rightarrow

|0⟩

 $|0\rangle$

 $|1\rangle$

0

 $|1\rangle$

Computation Basis States ($C_{qc} \subset \mathcal{B}_{n,m}$)

$$|0\rangle = |1,0\rangle_{\mathcal{F}} \, | \mathtt{suffix} \rangle_{\mathcal{F}} \qquad \qquad |1\rangle = |0,1\rangle_{\mathcal{F}} \, | \mathtt{suffix} \rangle_{\mathcal{F}}$$

$$\ket{\mathtt{1}} = \ket{\mathtt{0},\mathtt{1}}_{\mathcal{F}}\ket{\mathtt{suffix}}_{\mathcal{F}}$$

$$|\texttt{00}\rangle = |\texttt{1}, \texttt{0}, \texttt{1}, \texttt{0}\rangle_{\mathcal{F}} \, |\texttt{suffix}\rangle_{\mathcal{F}} \quad |\texttt{01}\rangle = |\texttt{1}, \texttt{0}, \texttt{0}, \texttt{1}\rangle_{\mathcal{F}} \, |\texttt{suffix}\rangle_{\mathcal{F}} \quad \dots$$

$$\ket{ exttt{01}} = \ket{ exttt{1}, exttt{0}, exttt{0}, exttt{1}}_{\mathcal{F}} \ket{ exttt{suffix}}_{\mathcal{F}}$$

Computation Basis States $(C_{qc} \subset \mathcal{B}_{n,m})$

$$\begin{split} |0\rangle &= |1,0\rangle_{\mathcal{F}} \, |\text{suffix}\rangle_{\mathcal{F}} & |1\rangle = |0,1\rangle_{\mathcal{F}} \, |\text{suffix}\rangle_{\mathcal{F}} \\ |00\rangle &= |1,0,1,0\rangle_{\mathcal{F}} \, |\text{suffix}\rangle_{\mathcal{F}} & |01\rangle = |1,0,0,1\rangle_{\mathcal{F}} \, |\text{suffix}\rangle_{\mathcal{F}} & \dots \end{split}$$

Example suffixes:

$$|\rangle_{\mathcal{F}}\,, |0,0\rangle_{\mathcal{F}}\,, |3\rangle_{\mathcal{F}}\,, |1,1\rangle_{\mathcal{F}}$$

Measurement Methods

Post-Selection

Measurement Methods

Heralded

Implementing Gates

Want to implement a quantum computing operation U on computation basis (C_{qc})

$$(\hat{\mathcal{U}})_{\mathcal{F}} = egin{array}{ccc} |\mathcal{C}_{qc}| \ \left(egin{array}{ccc} \widehat{\alpha \mathcal{U}} & \mathcal{M}_1 \ \mathcal{M}_0 & \mathcal{M}_2 \end{array}
ight),$$

Implementing Gates

Want to implement a quantum computing operation U on computation basis (C_{qc})

$$(\hat{\mathcal{U}})_{\mathcal{F}} = egin{array}{ccc} |\mathcal{C}_{qc}| \ \overbrace{\begin{pmatrix} \alpha \mathcal{U} & \mathcal{M}_1 \ \mathcal{M}_0 & \mathcal{M}_2 \end{pmatrix}}, \end{array}$$

Success probability: $|\alpha|^2$ $(\alpha \in \mathbb{C})$

CZ Example - Post-select

$$\frac{1}{3}\begin{pmatrix} \sqrt{3} & 0 & 0 & 0 & 0 & -\sqrt{6} \\ 0 & \sqrt{3} & 0 & -\sqrt{6} & 0 & 0 \\ 0 & 0 & \sqrt{3} & 0 & \sqrt{6} & 0 \\ 0 & \sqrt{6} & 0 & \sqrt{3} & 0 & 0 \\ 0 & 0 & -\sqrt{6} & 0 & \sqrt{3} & 0 \\ -\sqrt{6} & 0 & 0 & 0 & 0 & -\sqrt{3} \end{pmatrix}$$

Post-select ($\sin^2 \theta = 1/3$); success probability = 1/9

CZ Example - Heralded

Heralded (
$$\psi=\pi,$$
 $\theta_1=-\theta_2=\frac{54.74}{180}\pi,$ $\theta_3=\frac{17.63}{180}\pi)$
Success probability = 2/27

Problem (General)

Given a quantum computing unitary operation, U, that acts on q qubits, find a photonics circuit, \hat{U} , that implements U on its Fock space $U_{\mathcal{F}}$.

July 21, 2025 (rria 12

Problem (General)

Given a quantum computing unitary operation, U, that acts on q qubits, find a photonics circuit, \hat{U} , that implements U on its Fock space $U_{\mathcal{F}}$.

Problem (Optimisation)

Given a quantum computing unitary operation, U, that acts on q qubits, 2q (dual-rail) $+ m_a$ (auxiliary) optical wires and a coincidence basis, C; find a dual-rail linear optics operation \hat{U} that maximises the likelihood of U occurring.

SMT Solvers and dReal

July 21, 2025 (nr.ta)

Satisfiability Modulo Theory (SMT)

$$(a+2b<5 \lor 3a-b<-1) \land (3a-b \ge -1 \lor a+6 > 10) \land \ldots,$$

▶ Have a dedicated theory solver that can find appropriate values for variables

Satisfiability Modulo Theory (SMT)

$$(a+2b<5 \lor 3a-b<-1) \land (3a-b \ge -1 \lor a+6 > 10) \land \ldots,$$

- ▶ Have a dedicated theory solver that can find appropriate values for variables
- \blacktriangleright Solved by using SAT solver + Theory solver (reals, integers, strings, . . .)

Satisfiability Modulo Theory (SMT)

$$(a+2b<5 \lor 3a-b<-1) \land (3a-b \ge -1 \lor a+6 > 10) \land \dots,$$

- ▶ Have a dedicated theory solver that can find appropriate values for variables
- \blacktriangleright Solved by using SAT solver + Theory solver (reals, integers, strings, . . .)
- ▶ Many software tools available: Z3, Yices, cvc5, ...

$$ab, a^2, a^3b^2, \dots$$

$$ab, a^2, a^3b^2, ...$$

$$f(a,b,\dots)=0$$

$$ab, a^2, a^3b^2, ...$$

$$f(a, b, \dots) = 0 \longrightarrow |f(a, b, \dots)| \le \delta$$

$$ab, a^2, a^3b^2, \dots$$

$$f(a,b,\ldots)=0\longrightarrow |f(a,b,\ldots)|\leq \delta$$

dReal - δ -weakening SMT solver

Search Algorithm for Photonics Problem

July 21, 2025 (nzía

Finding a δ -sat

 $\label{eq:core} {\tt core} = {\tt bound} \land {\tt unitary} \land {\tt fockequal}$ extra constraints

nría

Finding a δ -sat

nría_

Finding a δ -sat

Unitary Extraction

► CZ with no auxiliary wires - infeasible

lnría_

- ► CZ with no auxiliary wires infeasible
- ► CZ with one vacuum wire infeasible

lnría_

- ► CZ with no auxiliary wires infeasible
- ► CZ with one vacuum wire infeasible
- \triangleright CZ with two vacuum wire replicate known result

nría_

- ► CZ with no auxiliary wires infeasible
- ► CZ with one vacuum wire infeasible
- \triangleright CZ with two vacuum wire replicate known result

► Similar results for CNOT

lnría_

Post-selection: CZ with one auxiliary wire

Post-selection: CZ with one auxiliary wire

Post-selection: CZ with one auxiliary wire

Matches results in Alessio Baldazzi and Lorenzo Pavesi. "Universal multiport interferometers for post-selected multi-photon gates." 2024

Post-selection: Givens Rotation Gates

$$G(\theta) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & \cos(heta) & -\sin(heta) & 0 \ 0 & \sin(heta) & \cos(heta) & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Post-selection: Givens Rotation Gates

$$G(heta) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & \cos(heta) & -\sin(heta) & 0 \ 0 & \sin(heta) & \cos(heta) & 0 \ 0 & 0 & 0 & 1 \end{pmatrix}$$

Post-selection: Givens Rotation Gates

$$G(heta) = egin{pmatrix} 1 & 0 & 0 & 0 \ 0 & \cos(heta) & -\sin(heta) & 0 \ 0 & \sin(heta) & \cos(heta) & 0 \ 0 & 0 & 1 \end{pmatrix}$$

► CZ with no or one vacuum wire - infeasible

July 21, 2025 (rria

- ► CZ with no or one vacuum wire infeasible
- ► CZ with two vacuum wires infeasible with probability at least $\frac{1}{100}$

- ► CZ with no or one vacuum wire infeasible
- ▶ CZ with two vacuum wires infeasible with probability at least $\frac{1}{100}$
- ► CZ with a single photon down one auxiliary wire infeasible (also for any number of photons)

- ► CZ with no or one vacuum wire infeasible
- ▶ CZ with two vacuum wires infeasible with probability at least $\frac{1}{100}$
- ► CZ with a single photon down one auxiliary wire infeasible (also for any number of photons)
- ► CZ with two wires and two photons unkown (but known in literature)

▶ Developed a general method for finding photonics circuits using SMT solvers

- ▶ Developed a general method for finding photonics circuits using SMT solvers
- ► Implemented into Python

July 21, 2025 (nria

- ▶ Developed a general method for finding photonics circuits using SMT solvers
- ▶ Implemented into Python
- ▶ Shown we can replicate results and generate new results for post-selection

July 21, 2025 (nria

- ▶ Developed a general method for finding photonics circuits using SMT solvers
- ▶ Implemented into Python
- ▶ Shown we can replicate results and generate new results for post-selection

Improvements

► Complex numbers (works for single qubit operations, but not higher)

- ▶ Developed a general method for finding photonics circuits using SMT solvers
- ▶ Implemented into Python
- ▶ Shown we can replicate results and generate new results for post-selection

Improvements

- ► Complex numbers (works for single qubit operations, but not higher)
- ightharpoonup 3 qubit gates

_____ Conclusion

- ▶ Developed a general method for finding photonics circuits using SMT solvers
- ▶ Implemented into Python
- ▶ Shown we can replicate results and generate new results for post-selection

Improvements

- ► Complex numbers (works for single qubit operations, but not higher)
- ▶ 3 qubit gates
- ► Replicate known results for heralded

- ▶ Developed a general method for finding photonics circuits using SMT solvers
- ▶ Implemented into Python
- ▶ Shown we can replicate results and generate new results for post-selection

Improvements

- ► Complex numbers (works for single qubit operations, but not higher)
- ▶ 3 qubit gates
- ► Replicate known results for heralded
- \triangleright Finding bounds to optimal result (based on δ)

Thanks for Listening

Alessio Baldazzi and Lorenzo Pavesi.

Universal multiport interferometers for post-selected multi-photon gates.

Advanced Quantum Technologies, page 2400418, 2024.

Sicun Gao, Soonho Kong, and Edmund M. Clarke.

dReal: An SMT solver for nonlinear theories over the reals.

In Maria Paola Bonacina, editor, Automated Deduction – CADE-24, pages 208–214, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

E. Knill.

Quantum gates using linear optics and postselection.

Phys. Rev. A, 66:052306, Nov 2002.

Pieter Kok, W. J. Munro, Kae Nemoto, T. C. Ralph, Jonathan P. Dowling, and G. J. Milburn.

Linear optical quantum computing with photonic qubits.

Rev. Mod. Phys., 79:135-174, Jan 2007.