
Automata-Based Fully Automated Analysis of
Quantum Programs with AutoQ

Ondřej Lengál

Brno University of Technology, Czech Republic

joint work with
Parosh Aziz Abdulla, Yu-Fang Chen, Yo-Ga Chen, Kai-Min Chung, Michal Hečko,

Lukáš Holı́k, Min-Hsiu Hsieh, Wei-Jia Huang, Jyun-Ao Lin, Fang-Yi Lo,
Ramanathan S. Thinniyam, Wei-Lun Tsai, Di-De Yen

VQC’25

Verification of Classical Programs

Verification of classical programs:
(pre/post-condition based, a.k.a. Floyd-Hoare style)

precondition

{Pre} S
statement

postcondition

{Post}
Pre and Post denote sets of program states

Meaning:
If S is executed from a state from Pre
and the execution of S terminates,
then the program state after S terminates is in Post .

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 2 / 23

Verification of Classical Programs

Verification of classical programs:
(pre/post-condition based, a.k.a. Floyd-Hoare style)

precondition

{Pre} S
statement

postcondition

{Post}
Pre and Post denote sets of program states

Meaning:
If S is executed from a state from Pre
and the execution of S terminates,
then the program state after S terminates is in Post .

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 2 / 23

Verification of Classical Programs

Verification of classical programs:
(pre/post-condition based, a.k.a. Floyd-Hoare style)

precondition

{Pre} S
statement

postcondition

{Post}
Pre and Post denote sets of program states

Meaning:
If S is executed from a state from Pre
and the execution of S terminates,
then the program state after S terminates is in Post .

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 2 / 23

Verification of Quantum Circuits

Verification of quantum circuits:

precondition

{Pre} C
circuit

postcondition

{Post}
Pre and Post denote sets of quantum states

Meaning:
If C is executed from a quantum state from Pre
then the quantum state after C terminates is in Post .
(termination is implicit)

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 3 / 23

Verification of Quantum Circuits

Verification of quantum circuits:

precondition

{Pre} C
circuit

postcondition

{Post}
Pre and Post denote sets of quantum states

Meaning:
If C is executed from a quantum state from Pre
then the quantum state after C terminates is in Post .
(termination is implicit)

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 3 / 23

Verification of Quantum Circuits

Verification of quantum circuits:

precondition

{Pre} C
circuit

postcondition

{Post}
Pre and Post denote sets of quantum states

Meaning:
If C is executed from a quantum state from Pre
then the quantum state after C terminates is in Post .
(termination is implicit)

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 3 / 23

Verification of Quantum Circuits

Example (GHZ)

{|w⟩ : w ∈ {0, 1}4}

H

{ 1√
2
|0b2b3b4⟩ ± 1√

2

∣∣1b̄2b̄3b̄4
〉
:

b2b3b4 ∈ {0,1}3}

Pre Circuit Post

Pre = {|0000⟩ , |0001⟩ , . . . , |1111⟩}

How to efficiently represent sets of quantum states Pre and Post?

naively ; double exponential size

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 4 / 23

Verification of Quantum Circuits

Example (GHZ)

{|w⟩ : w ∈ {0, 1}4}

H

{ 1√
2
|0b2b3b4⟩ ± 1√

2

∣∣1b̄2b̄3b̄4
〉
:

b2b3b4 ∈ {0,1}3}

Pre Circuit Post

Pre = {|0000⟩ , |0001⟩ , . . . , |1111⟩}

How to efficiently represent sets of quantum states Pre and Post?

naively ; double exponential size

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 4 / 23

Verification of Quantum Circuits

Example (GHZ)

{|w⟩ : w ∈ {0, 1}4}

H

{ 1√
2
|0b2b3b4⟩ ± 1√

2

∣∣1b̄2b̄3b̄4
〉
:

b2b3b4 ∈ {0,1}3}

Pre Circuit Post

Pre = {|0000⟩ , |0001⟩ , . . . , |1111⟩}

How to efficiently represent sets of quantum states Pre and Post?

naively ; double exponential size

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 4 / 23

Quantum States are Trees

. . . and quantum gates are tree operations

Quantum States are Trees
. . . and quantum gates are tree operations

Quantum States are Trees

x y z amp

0 0 0 ½
0 0 1 0
0 1 0 0
0 1 1 ½
1 0 0 ½ i
1 0 1 0
1 1 0 0
1 1 1 ½ i

⇒

½ 0 0 ½ ½i 0 0 ½i

perfect tree of height n (the number of qubits) ; 2n leaves

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 6 / 23

Quantum States are Trees

x y z amp

0 0 0 ½
0 0 1 0
0 1 0 0
0 1 1 ½
1 0 0 ½ i
1 0 1 0
1 1 0 0
1 1 1 ½ i

⇒

½ 0 0 ½ ½i 0 0 ½i

perfect tree of height n (the number of qubits) ; 2n leaves

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 6 / 23

Quantum States are Trees

x y z amp

0 0 0 ½
0 0 1 0
0 1 0 0
0 1 1 ½
1 0 0 ½ i
1 0 1 0
1 1 0 0
1 1 1 ½ i

⇒

½ 0 0 ½ ½i 0 0 ½i

z z z z

y y

x
0 1

0 1 0 1

0 1 0 1 0 1 0 1

perfect tree of height n (the number of qubits) ; 2n leaves

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 6 / 23

Quantum Gates are Tree Operations

X

X1 =

X︷ ︸︸ ︷[
0 1
1 0

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

c d

•
a b

Z CZ 1
2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1


•

•
a b

•
c d ;

•
•

a b

•
c -d

H

H1 =

H︷ ︸︸ ︷[
1√
2

1√
2

1√
2

−1√
2

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

a+c√
2

b+d√
2

•
a−c√

2
b−d√

2

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 7 / 23

Quantum Gates are Tree Operations

X

X1 =

X︷ ︸︸ ︷[
0 1
1 0

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

c d

•
a b

Z CZ 1
2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1


•

•
a b

•
c d ;

•
•

a b

•
c -d

H

H1 =

H︷ ︸︸ ︷[
1√
2

1√
2

1√
2

−1√
2

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

a+c√
2

b+d√
2

•
a−c√

2
b−d√

2

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 7 / 23

Quantum Gates are Tree Operations

X

X1 =

X︷ ︸︸ ︷[
0 1
1 0

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

c d

•
a b

Z CZ 1
2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1


•

•
a b

•
c d ;

•
•

a b

•
c -d

H

H1 =

H︷ ︸︸ ︷[
1√
2

1√
2

1√
2

−1√
2

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

a+c√
2

b+d√
2

•
a−c√

2
b−d√

2

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 7 / 23

Quantum Gates are Tree Operations

X

X1 =

X︷ ︸︸ ︷[
0 1
1 0

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

c d

•
a b

Z CZ 1
2 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 -1


•

•
a b

•
c d ;

•
•

a b

•
c -d

H

H1 =

H︷ ︸︸ ︷[
1√
2

1√
2

1√
2

−1√
2

]
⊗

I︷ ︸︸ ︷[
1 0
0 1

] •
•

a b

•
c d ;

•
•

a+c√
2

b+d√
2

•
a−c√

2
b−d√

2

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 7 / 23

Sets of Quantum States are Sets of Trees
How to efficiently represent sets of trees?

Tree automata!
tree automata
▶ finite-state automata representing sets of finite trees
▶ extension of standard finite automata for regular languages

Example
p

q1 q0

r1 r0

1 0

represents the set
{|00⟩ , |01⟩ , |10⟩ , |11⟩} =



•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1



Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 8 / 23

Sets of Quantum States are Sets of Trees
How to efficiently represent sets of trees?

Tree automata!

tree automata
▶ finite-state automata representing sets of finite trees
▶ extension of standard finite automata for regular languages

Example
p

q1 q0

r1 r0

1 0

represents the set
{|00⟩ , |01⟩ , |10⟩ , |11⟩} =



•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1



Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 8 / 23

Sets of Quantum States are Sets of Trees
How to efficiently represent sets of trees?

Tree automata!
tree automata
▶ finite-state automata representing sets of finite trees
▶ extension of standard finite automata for regular languages

Example
p

q1 q0

r1 r0

1 0

represents the set
{|00⟩ , |01⟩ , |10⟩ , |11⟩} =



•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1



Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 8 / 23

Sets of Quantum States are Sets of Trees
How to efficiently represent sets of trees?

Tree automata!
tree automata
▶ finite-state automata representing sets of finite trees
▶ extension of standard finite automata for regular languages

Example
p

q1 q0

r1 r0

1 0

represents the set
{|00⟩ , |01⟩ , |10⟩ , |11⟩} =



•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1


Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 8 / 23

Representing Pre and Post with Tree Automata

precondition

{APre} C
circuit

postcondition

{APost}

Example (GHZ)

•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1


H



•
•

1√
2 0

•
0 1√

2 ,

•
•

0 1√
2

•
1√
2 0 ,•

•
1√
2 0

•
0 −1√

2 ,

•
•

0 1√
2

•
−1√

2 0


L(APre) L(APost)

A’s size can be small
▶ e.g., A for {|w⟩ : w ∈ {0, 1}n} needs O(n) states/transitions

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 9 / 23

Representing Pre and Post with Tree Automata

precondition

{APre} C
circuit

postcondition

{APost}
Example (GHZ)

•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1


H



•
•

1√
2 0

•
0 1√

2 ,

•
•

0 1√
2

•
1√
2 0 ,•

•
1√
2 0

•
0 −1√

2 ,

•
•

0 1√
2

•
−1√

2 0


L(APre) L(APost)

A’s size can be small
▶ e.g., A for {|w⟩ : w ∈ {0, 1}n} needs O(n) states/transitions

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 9 / 23

Representing Pre and Post with Tree Automata

precondition

{APre} C
circuit

postcondition

{APost}
Example (GHZ)

•
•

1 0

•
0 0 ,

•
•

0 1

•
0 0 ,•

•
0 0

•
1 0 ,

•
•

0 0

•
0 1


H



•
•

1√
2 0

•
0 1√

2 ,

•
•

0 1√
2

•
1√
2 0 ,•

•
1√
2 0

•
0 −1√

2 ,

•
•

0 1√
2

•
−1√

2 0


L(APre) L(APost)

A’s size can be small
▶ e.g., A for {|w⟩ : w ∈ {0, 1}n} needs O(n) states/transitions

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 9 / 23

Verification with Tree Automata

precondition

{APre} C
circuit

postcondition

{APost}
Run C with APre:

Example

H

APre A2 A3

. . . and test L(A3) ⊆ L(APost)
▶ (standard tree automata inclusion is EXPTIME-complete)

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 10 / 23

Abstract Transformers for Quantum Gates

G

A1 A2

How to compute A2 such that L(A2) = G(L(A1)) efficiently?
▶ naively (i.e., one tree by one) — doesn’t scale

; abstract transformers
▶ specialized automata operations for concrete gates

Example
p

q1 q0

r1 r0

1 0

X

p

q1 q0

r1 r0

1 0

{|00⟩ , |01⟩} {|10⟩ , |11⟩}

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 11 / 23

Abstract Transformers for Quantum Gates

G

A1 A2

How to compute A2 such that L(A2) = G(L(A1)) efficiently?
▶ naively (i.e., one tree by one) — doesn’t scale

; abstract transformers
▶ specialized automata operations for concrete gates

Example
p

q1 q0

r1 r0

1 0

X

p

q1 q0

r1 r0

1 0

{|00⟩ , |01⟩} {|10⟩ , |11⟩}

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 11 / 23

Abstract Transformers for Quantum Gates

G

A1 A2

How to compute A2 such that L(A2) = G(L(A1)) efficiently?
▶ naively (i.e., one tree by one) — doesn’t scale

; abstract transformers
▶ specialized automata operations for concrete gates

Example
p

q1 q0

r1 r0

1 0

X

p

q1 q0

r1 r0

1 0

{|00⟩ , |01⟩} {|10⟩ , |11⟩}

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 11 / 23

Abstract Transformers for Quantum Gates

G

A1 A2

Supported gate types:
▶ (anti-)diagonal: X ,Y ,Z ,S,T ,Rz , controls (CNOT ,CZ ,Toffoli , . . .)

• simple manipulation with automaton: O(|A1|)

▶ general: H,Rx ,Ry , . . .
• need to synchronize subtrees of the same tree

•

•

a b

•

c d

H
•

•

a+c√
2

b+d√
2

•

a−c√
2

b−d√
2

• standard tree automata: O(2|A1|)
• level-synchronized tree automata: O(|A1|2)

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 12 / 23

Abstract Transformers for Quantum Gates

G

A1 A2

Supported gate types:
▶ (anti-)diagonal: X ,Y ,Z ,S,T ,Rz , controls (CNOT ,CZ ,Toffoli , . . .)

• simple manipulation with automaton: O(|A1|)
▶ general: H,Rx ,Ry , . . .

• need to synchronize subtrees of the same tree
•

•

a b

•

c d

H
•

•

a+c√
2

b+d√
2

•

a−c√
2

b−d√
2

• standard tree automata: O(2|A1|)
• level-synchronized tree automata: O(|A1|2)

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 12 / 23

Quantum Circuit Verification Algorithm

precondition

{APre} C
circuit

postcondition

{APost}
Algorithm:

1 Start with APre.

2 Run C on APre using abstract transformers, obtaining AC .
3 Test L(AC) ⊆ L(APost).

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 13 / 23

Quantum Circuit Verification Algorithm

precondition

{APre} C
circuit

postcondition

{APost}
Algorithm:

1 Start with APre.
2 Run C on APre using abstract transformers, obtaining AC .

3 Test L(AC) ⊆ L(APost).

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 13 / 23

Quantum Circuit Verification Algorithm

precondition

{APre} C
circuit

postcondition

{APost}
Algorithm:

1 Start with APre.
2 Run C on APre using abstract transformers, obtaining AC .
3 Test L(AC) ⊆ L(APost).

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 13 / 23

Level-Synchronized
Tree Automata

Level-Synchronized Tree Automata (LSTAs)

Level-Synchronized Tree Automata

allow synchronization across subtrees
p

q+ q±

r+ r0 r±

1√
2 0 1√

2
−1√

2

{1} {2} {1} {2}

{1, 2} {1, 2} {1} {2}

cost of operations
▶ (anti-)diagonal gates: still O(|A|)
▶ general gates: O(|A|2) (improved from O(2|A|))

incomparable to basic TAs
▶ cannot express “all trees”

language operations:
▶ emptiness: PSPACE-complete
▶ inclusion/equivalence: PSPACE-hard, in EXPSPACE

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 15 / 23

Level-Synchronized Tree Automata (LSTAs)

Level-Synchronized Tree Automata

allow synchronization across subtrees
p

q+ q±

r+ r0 r±

1√
2 0 1√

2
−1√

2

{1} {2} {1} {2}

{1, 2} {1, 2} {1} {2}

cost of operations
▶ (anti-)diagonal gates: still O(|A|)
▶ general gates: O(|A|2) (improved from O(2|A|))

incomparable to basic TAs
▶ cannot express “all trees”

language operations:
▶ emptiness: PSPACE-complete
▶ inclusion/equivalence: PSPACE-hard, in EXPSPACE

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 15 / 23

Level-Synchronized Tree Automata (LSTAs)

Level-Synchronized Tree Automata

allow synchronization across subtrees
p

q+ q±

r+ r0 r±

1√
2 0 1√

2
−1√

2

{1} {2} {1} {2}

{1, 2} {1, 2} {1} {2}

cost of operations
▶ (anti-)diagonal gates: still O(|A|)
▶ general gates: O(|A|2) (improved from O(2|A|))

incomparable to basic TAs
▶ cannot express “all trees”

language operations:
▶ emptiness: PSPACE-complete
▶ inclusion/equivalence: PSPACE-hard, in EXPSPACE

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 15 / 23

Level-Synchronized Tree Automata (LSTAs)

Level-Synchronized Tree Automata

allow synchronization across subtrees
p

q+ q±

r+ r0 r±

1√
2 0 1√

2
−1√

2

{1} {2} {1} {2}

{1, 2} {1, 2} {1} {2}

cost of operations
▶ (anti-)diagonal gates: still O(|A|)
▶ general gates: O(|A|2) (improved from O(2|A|))

incomparable to basic TAs
▶ cannot express “all trees”

language operations:
▶ emptiness: PSPACE-complete
▶ inclusion/equivalence: PSPACE-hard, in EXPSPACE

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 15 / 23

Level-Synchronized Tree Automata (LSTAs)

Level-Synchronized Tree Automata

allow synchronization across subtrees
p

q+ q±

r+ r0 r±

1√
2 0 1√

2
−1√

2

{1} {2} {1} {2}

{1, 2} {1, 2} {1} {2}

cost of operations
▶ (anti-)diagonal gates: still O(|A|)
▶ general gates: O(|A|2) (improved from O(2|A|))

incomparable to basic TAs
▶ cannot express “all trees”

language operations:
▶ emptiness: PSPACE-complete
▶ inclusion/equivalence: PSPACE-hard, in EXPSPACE

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 15 / 23

Level-Synchronized Tree Automata (LSTAs)

Level-Synchronized Tree Automata

enable basic parameterized verification

Example (GHZ)
p

q1

q0

1

0

{1}

{1}

{1}

{2}

{2}

...

|x1⟩ H

|x2⟩
|x3⟩

|xn−2⟩
|xn−1⟩

|xn⟩

p

qRqL

q0

1√
2

1√
2

0

{1} {1}

{1}

{2}

{2}

{2}

{|0n⟩ : n ≥ 1} { 1√
2
|0n⟩+ 1√

2
|1n⟩ : n ≥ 1}

GHZ, fermionic unitary evolution (single/double fermionic excitation)

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 16 / 23

Level-Synchronized Tree Automata (LSTAs)

Level-Synchronized Tree Automata

enable basic parameterized verification

Example (GHZ)
p

q1

q0

1

0

{1}

{1}

{1}

{2}

{2}

...

|x1⟩ H

|x2⟩
|x3⟩

|xn−2⟩
|xn−1⟩

|xn⟩

p

qRqL

q0

1√
2

1√
2

0

{1} {1}

{1}

{2}

{2}

{2}

{|0n⟩ : n ≥ 1} { 1√
2
|0n⟩+ 1√

2
|1n⟩ : n ≥ 1}

GHZ, fermionic unitary evolution (single/double fermionic excitation)

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 16 / 23

Weighted
Level-Synchronized

Tree Automata

Weighted Level-Synchronized Tree Automata
Weighted Level-Synchronized Tree Automata

transitions:
tree automata: q −→ a(q1, q2)

level-synchronized TAs: q 1−→ a(q1, q2)

weighted LSTAs: q 1−→ a(1√
2
q1 +

1√
2
q2,

1√
2
q1 − 1√

2
q2)

weighted LSTAs:
language operations:
▶ emptiness: PSPACE-complete
▶ inclusion/equivalence: undecidable
▶ coloured equivalence: PSPACE-hard, in EXPSPACE

• usable for testing equivalence
• sometimes usable for pre/post-verification

+ weighted tree transducers (instead of specialized algorithms)
regular model checking-like verification algorithm
support for parameterized verification

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 18 / 23

Weighted Level-Synchronized Tree Automata
Weighted Level-Synchronized Tree Automata

transitions:
tree automata: q −→ a(q1, q2)

level-synchronized TAs: q 1−→ a(q1, q2)

weighted LSTAs: q 1−→ a(1√
2
q1 +

1√
2
q2,

1√
2
q1 − 1√

2
q2)

weighted LSTAs:
language operations:
▶ emptiness: PSPACE-complete
▶ inclusion/equivalence: undecidable
▶ coloured equivalence: PSPACE-hard, in EXPSPACE

• usable for testing equivalence
• sometimes usable for pre/post-verification

+ weighted tree transducers (instead of specialized algorithms)
regular model checking-like verification algorithm
support for parameterized verification

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 18 / 23

Weighted Level-Synchronized Tree Automata
Weighted Level-Synchronized Tree Automata

transitions:
tree automata: q −→ a(q1, q2)

level-synchronized TAs: q 1−→ a(q1, q2)

weighted LSTAs: q 1−→ a(1√
2
q1 +

1√
2
q2,

1√
2
q1 − 1√

2
q2)

weighted LSTAs:
language operations:
▶ emptiness: PSPACE-complete
▶ inclusion/equivalence: undecidable
▶ coloured equivalence: PSPACE-hard, in EXPSPACE

• usable for testing equivalence
• sometimes usable for pre/post-verification

+ weighted tree transducers (instead of specialized algorithms)
regular model checking-like verification algorithm
support for parameterized verification
Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 18 / 23

What can we verify?

(parameterized versions of) Bernstein-Vazirani, multi-control Toffoli
Grover’s algorithm:
▶ pre/post with precise sets of quantum states
▶ single/all oracles
▶ P(solution) > 0.9 (symbolic TAs)
▶ one iteration increases probability (symbolic TAs)
▶ equivalence of parameterized one loop (WLSTAs)
▶ weakly-measured version (symbolic TAs + measurements)

repeat until success circuits
circuits from RevLib, Feynman, Random
parameterized GHZ (LSTAs), arithmetic circuits (WLSTAs), basic
QECCs (WLSTAs)
parameterized fermionic unitary evolution (LSTAs), Hamiltonian
simulation (WLSTAs)

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 19 / 23

Takeaways and Future
Directions

Takeaways

Quantum ♡ Automata

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 21 / 23

Future Directions

a good specification language
▶ expressive, user-friendly
▶ can compile to (*)TAs quickly

parameterized verification of circuits with QFT

How to represent quantum circuits efficiently?
▶ algebra over trees? logic?

Thank you!

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 22 / 23

Future Directions

a good specification language
▶ expressive, user-friendly
▶ can compile to (*)TAs quickly

parameterized verification of circuits with QFT

How to represent quantum circuits efficiently?
▶ algebra over trees? logic?

Thank you!

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 22 / 23

References

Chen, Chung, Lengál, Lin, Tsai, Yen. An Automata-Based Framework for
Verification and Bug Hunting in Quantum Circuits. PLDI’23.

Chen, Chung, Lengál, Lin, Tsai. AutoQ: An Automata-Based Quantum Circuit
Verifier. CAV’23.

Abdulla, Chen, Chen, Holı́k, Lengál, Lin, Lo, Tsai. Verifying Quantum Circuits
with Level-Synchronized Tree Automata. POPL’25.

Chen, Chung, Hsieh, Huang, Lengál, Lin, Tsai. AutoQ 2.0: From Verification of
Quantum Circuits to Verification of Quantum Programs. TACAS’25.

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 23 / 23

Symbolic Amplitudes

Introducing Symbolic Amplitudes
So far, we only used finite numbers of amplitudes

But what about verifying a property like this?

Example

{h |000⟩+ ℓ |w⟩ :
w ∈ {0,1}3 \ {000}}

Grover {h′ |000⟩+ ℓ′ |w⟩ :
w ∈ {0,1}3 \ {000}}

global constraint:

h, h′, ℓ, ℓ′ ∈ C ∧ |h′|2 ≥ |h|2 ∧ |ℓ′|2 ≤ |ℓ|2 ∧
|h|2 ≥ |ℓ|2 ∧ |h|2 + 7|ℓ|2 = 1 ∧ |h′|2 + 7|ℓ′|2 = 1

uncountably many amplitueds
uncountably many quantum states
; symbolic amplitudes!

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 25 / 23

Introducing Symbolic Amplitudes
So far, we only used finite numbers of amplitudes
But what about verifying a property like this?

Example

{h |000⟩+ ℓ |w⟩ :
w ∈ {0,1}3 \ {000}}

Grover {h′ |000⟩+ ℓ′ |w⟩ :
w ∈ {0,1}3 \ {000}}

global constraint:

h, h′, ℓ, ℓ′ ∈ C ∧ |h′|2 ≥ |h|2 ∧ |ℓ′|2 ≤ |ℓ|2 ∧
|h|2 ≥ |ℓ|2 ∧ |h|2 + 7|ℓ|2 = 1 ∧ |h′|2 + 7|ℓ′|2 = 1

uncountably many amplitueds
uncountably many quantum states
; symbolic amplitudes!

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 25 / 23

Introducing Symbolic Amplitudes
So far, we only used finite numbers of amplitudes
But what about verifying a property like this?

Example

{h |000⟩+ ℓ |w⟩ :
w ∈ {0,1}3 \ {000}}

Grover {h′ |000⟩+ ℓ′ |w⟩ :
w ∈ {0,1}3 \ {000}}

global constraint:

h, h′, ℓ, ℓ′ ∈ C ∧ |h′|2 ≥ |h|2 ∧ |ℓ′|2 ≤ |ℓ|2 ∧
|h|2 ≥ |ℓ|2 ∧ |h|2 + 7|ℓ|2 = 1 ∧ |h′|2 + 7|ℓ′|2 = 1

uncountably many amplitueds
uncountably many quantum states

; symbolic amplitudes!

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 25 / 23

Introducing Symbolic Amplitudes
So far, we only used finite numbers of amplitudes
But what about verifying a property like this?

Example

{h |000⟩+ ℓ |w⟩ :
w ∈ {0,1}3 \ {000}}

Grover {h′ |000⟩+ ℓ′ |w⟩ :
w ∈ {0,1}3 \ {000}}

global constraint:

h, h′, ℓ, ℓ′ ∈ C ∧ |h′|2 ≥ |h|2 ∧ |ℓ′|2 ≤ |ℓ|2 ∧
|h|2 ≥ |ℓ|2 ∧ |h|2 + 7|ℓ|2 = 1 ∧ |h′|2 + 7|ℓ′|2 = 1

uncountably many amplitueds
uncountably many quantum states
; symbolic amplitudes!
Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 25 / 23

Verifying Quantum Circuits using Symbolic Amplitudes

Modifications to the verification algorithm:
(L-S) tree automata ; symbolic (L-S) tree automata
▶ alphabet contains symbolic values, terms, and predicates

abstract transformers are symbolic (à la symbolic execution):

Example
•

•
h ℓ

•
ℓ ℓ

H X X H

H X Z X H

•
•

h+3ℓ
2

h−ℓ
2

•
h−ℓ

2
h−ℓ

2

Grover’s diffusion operator

modified language inclusion test

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 26 / 23

Verifying Quantum Circuits using Symbolic Amplitudes

Modifications to the verification algorithm:
(L-S) tree automata ; symbolic (L-S) tree automata
▶ alphabet contains symbolic values, terms, and predicates

abstract transformers are symbolic (à la symbolic execution):

Example
•

•
h ℓ

•
ℓ ℓ

H X X H

H X Z X H

•
•

h+3ℓ
2

h−ℓ
2

•
h−ℓ

2
h−ℓ

2

Grover’s diffusion operator

modified language inclusion test

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 26 / 23

Verifying Quantum Circuits using Symbolic Amplitudes

Modifications to the verification algorithm:
(L-S) tree automata ; symbolic (L-S) tree automata
▶ alphabet contains symbolic values, terms, and predicates

abstract transformers are symbolic (à la symbolic execution):

Example
•

•
h ℓ

•
ℓ ℓ

H X X H

H X Z X H

•
•

h+3ℓ
2

h−ℓ
2

•
h−ℓ

2
h−ℓ

2

Grover’s diffusion operator

modified language inclusion test

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 26 / 23

Verification of Quantum Circuits with Loops

Common structure of quantum programs:

while (M(xi) = 0)
C;

Theorem 1 (Soundness). When Algorithm 5 terminates, it returns true i! A |=uts B.

Theorem 2 (Termination). When the terms in leaf symbols and the global constraints
of A and B use a decidable theory, the algorithm always terminates.

Proof. Since the number of states and terms occurring in A and B is finite, the con-
structed graph is also finite. Further, since the underlying theory for the terms and global
constraints is assumed to be decidable, the check at Line 9 always terminates. →↑

7 Experimental Results
We demonstrate the use of A!"#Q 2.0 [21] on two real-world use cases consisting of
quantum programs with loops that were proposed in [41,6]. We ran all experiments
on a server running Ubuntu 22.04.3 LTS with an AMD EPYC 7742 64-core processor
(1.5 GHz), 1,152 GiB of RAM, and a 1 TB SSD.

7.1 The Weakly Measured Version of Grover’s Algorithm

Algorithm 6: A Weakly Measured Version of
Grover’s algorithm (solution 𝐿 = 0𝐿)

1 Pre: {1
!!0𝐿+2〉 + 0 |↓↔};

2 𝑀3; 𝑀4; . . . ; 𝑀𝐿+2;
3 O2,..., (𝐿+2) ; CK2

1; O2,..., (𝐿+2) ;
4 Inv: {𝑁sol1 |000𝐿↔ + 𝑁𝑀

!!000𝐿↗11
〉 + · · · +

5 𝑁𝑀 |001𝐿↔ + 𝑁sol2 |100𝐿↔ + 0 |↓↔};
6 while 𝑂1 = 0 do
7 {G2,..., (𝐿+2) ; O2,..., (𝐿+2) ; CK2

1; O2,..., (𝐿+2)};
8 Post: {1 |10𝐿↔ + 0 |↓↔};

Grover’s algorithm [31], introduced in
1996, is a quantum algorithm that per-
forms an unstructured search. Given
an oracle function (which can say
whether a particular binary assign-
ment is a solution), Grover’s algorithm
can e!ciently find a solution (with
high probability). The algorithm re-
quires approximately O(

√
𝑃/𝑄) eval-

uations of the oracle function, where
𝑃 is the size of the function’s domain
(usually 2𝐿 for 𝑅 qubits), and 𝑄 is the number of solutions. The number of solutions is,
however, not always known, making it di!cult to determine the algorithm’s parameters
(the algorithm is sensitive to the number of evaluations; in particular, doing more eval-
uations may make the probability of finding the solution smaller). To address this issue,
a variation of Grover’s search, called the weakly measured version (cf. Algorithm 6), was
recently proposed [6]. The weakly measured version eliminates the need for knowing
the number of solutions, making the algorithm more applicable.

To explain the algorithm, we first introduce some of its key components. The algorithm
works over qubits 𝑆1, . . . , 𝑆𝐿+2. Line 2 first applies multiple Hadamard gates in parallel
to obtain the superposition on all qubits other than 𝑆1 and 𝑆2 (which are two ancillas),
obtaining the state in Fig. 7(a). The oracle circuit, denoted as O2,..., (𝐿+2) , works from
qubits 𝑆2 to 𝑆𝐿+2, where 𝑆2 is the ancilla qubit and 𝑆3 to 𝑆𝐿+2 are the working qubits.
As shown from Figs. 7(a) and 7(b) (and also from Figs. 7(c) and 7(d)), the e"ect of the
oracle circuit is to flip the ancilla qubit of the computational bases corresponding to the
solutions. That is, it swaps the amplitude values of |0𝐿↔ and |1𝐿↔, for all solutions 𝐿. The
oracle circuit can be constructed using gates supported in A!"#Q 2.0.

15

repeat-until-success, weakly measured Grover

symbolic (L-S)TAs + measurements

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 27 / 23

Verification of Quantum Circuits with Loops

Common structure of quantum programs:

while (M(xi) = 0)
C;

Theorem 1 (Soundness). When Algorithm 5 terminates, it returns true i! A |=uts B.

Theorem 2 (Termination). When the terms in leaf symbols and the global constraints
of A and B use a decidable theory, the algorithm always terminates.

Proof. Since the number of states and terms occurring in A and B is finite, the con-
structed graph is also finite. Further, since the underlying theory for the terms and global
constraints is assumed to be decidable, the check at Line 9 always terminates. →↑

7 Experimental Results
We demonstrate the use of A!"#Q 2.0 [21] on two real-world use cases consisting of
quantum programs with loops that were proposed in [41,6]. We ran all experiments
on a server running Ubuntu 22.04.3 LTS with an AMD EPYC 7742 64-core processor
(1.5 GHz), 1,152 GiB of RAM, and a 1 TB SSD.

7.1 The Weakly Measured Version of Grover’s Algorithm

Algorithm 6: A Weakly Measured Version of
Grover’s algorithm (solution 𝐿 = 0𝐿)

1 Pre: {1
!!0𝐿+2〉 + 0 |↓↔};

2 𝑀3; 𝑀4; . . . ; 𝑀𝐿+2;
3 O2,..., (𝐿+2) ; CK2

1; O2,..., (𝐿+2) ;
4 Inv: {𝑁sol1 |000𝐿↔ + 𝑁𝑀

!!000𝐿↗11
〉 + · · · +

5 𝑁𝑀 |001𝐿↔ + 𝑁sol2 |100𝐿↔ + 0 |↓↔};
6 while 𝑂1 = 0 do
7 {G2,..., (𝐿+2) ; O2,..., (𝐿+2) ; CK2

1; O2,..., (𝐿+2)};
8 Post: {1 |10𝐿↔ + 0 |↓↔};

Grover’s algorithm [31], introduced in
1996, is a quantum algorithm that per-
forms an unstructured search. Given
an oracle function (which can say
whether a particular binary assign-
ment is a solution), Grover’s algorithm
can e!ciently find a solution (with
high probability). The algorithm re-
quires approximately O(

√
𝑃/𝑄) eval-

uations of the oracle function, where
𝑃 is the size of the function’s domain
(usually 2𝐿 for 𝑅 qubits), and 𝑄 is the number of solutions. The number of solutions is,
however, not always known, making it di!cult to determine the algorithm’s parameters
(the algorithm is sensitive to the number of evaluations; in particular, doing more eval-
uations may make the probability of finding the solution smaller). To address this issue,
a variation of Grover’s search, called the weakly measured version (cf. Algorithm 6), was
recently proposed [6]. The weakly measured version eliminates the need for knowing
the number of solutions, making the algorithm more applicable.

To explain the algorithm, we first introduce some of its key components. The algorithm
works over qubits 𝑆1, . . . , 𝑆𝐿+2. Line 2 first applies multiple Hadamard gates in parallel
to obtain the superposition on all qubits other than 𝑆1 and 𝑆2 (which are two ancillas),
obtaining the state in Fig. 7(a). The oracle circuit, denoted as O2,..., (𝐿+2) , works from
qubits 𝑆2 to 𝑆𝐿+2, where 𝑆2 is the ancilla qubit and 𝑆3 to 𝑆𝐿+2 are the working qubits.
As shown from Figs. 7(a) and 7(b) (and also from Figs. 7(c) and 7(d)), the e"ect of the
oracle circuit is to flip the ancilla qubit of the computational bases corresponding to the
solutions. That is, it swaps the amplitude values of |0𝐿↔ and |1𝐿↔, for all solutions 𝐿. The
oracle circuit can be constructed using gates supported in A!"#Q 2.0.

15

repeat-until-success, weakly measured Grover
symbolic (L-S)TAs + measurements

Ondřej Lengál et al. AutoQ: Automata-Based Analysis of Quantum P. FIT BUT 27 / 23

	Quantum States are Trees
	Level-Synchronized Tree Automata
	Weighted Level-Synchronized Tree Automata
	Takeaways and Future Directions
	Appendix
	Verification of Quantum Circuits with Loops

