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Recent Progress

Scientific Advantages ⇒ Practical Advantages
研究背景：国内外量子硬件发展

Quantum Error Correction

•December 2024: “Willow” chip 
with 105 physical qubits.
•First realization of decreasing 
logical error rate exponentially 
with code distance.

•September 2024: with Quantinuum, 
achieved 12 logical qubits.
•November 2024: with Atom 
Computing, achieved 24 logical 
qubits, demonstrating fault tolerance.

Superconducting Chips

•December 2024: USTC 
launched “Zuchongzhi-3” chip.
Performance surpasses Google’s 
72-qubit “Sycamore”. 

Top 10 Scientific and 
Technological News in 
the World (2024)

Currently in the NISQ era, have
noteworthy scientific value

To the Beyond-NISQ era, need
advantages in applications
with commercial value.

John Preskill
Proposer of “NISQ”

Support

国内外量子硬件技术发展迅速，能展现科学价值，正迈向实际应用

Coordination across the full stack:
from fundamental physics, algorithms, 

to software engineering. 

Demonstrating Quantum Advantage 
Through Random Sampling Problems

Q2B 24
Meeting
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Circuit Noise

3

噪声是阻止量子计算步入Beyond-NISQ时代，展现实际应用的关键障碍

设计对噪声鲁棒的量子算法是量子计算步入Beyond-NISQ时代的核心挑战

A

E
(Noisy) Quantum Circuits

d {?8 }82O

Input Quantum States
{"8 }82O

Measurement
A(d)

Output
Figure 1: The Computational Model of Quantum Algorithms.

(I) 1-qubit (parameterized) logic gates (2 ⇥ 2 unitary matrices):
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(II) 1-qubit rotation gates that are rotation operators along G,~, I-
axis by angle \ , respectively:

'G (\ ) = 4�8\-/2 = cos \2 � � 8 sin \
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cos \
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Rotation gates 'G (\ ),'~ (\ ),'I (\ ) are widely used to encode
classical data into quantum states and also construct quantum
machine learning models (parameterized quantum circuits).
These will be detailed in the later discussion.

(III) 2-qubit Controlled-U gates (4 ⇥ 4 unitary matrices): For any
1-qubit logic gate* , we can get a 2-qubit logic gate — controlled-
* (CU) gate, applying * on the second qubit (the target qubit)
if and only if the �rst qubit (the control qubit) is |1i. See the
following instances:
(1) CNOT: CX gate is also known as controlled NOT (CNOT)

gate and has a special circuit representation:

CX = =
©≠≠≠
´

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

™ÆÆÆ
¨
.

(2) CZ gate:

CZ = =
©≠≠≠
´

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

™ÆÆÆ
¨

(3) Controlled parameterized gates: For example, the controlled
Pauli X rotation gate with rotation angle \ is:

'G (\ )
=
©≠≠≠
´

1 0 0 0
0 1 0 0
0 0 cos \

2 �8 sin \
2

0 0 �8 sin \
2 cos \

2

™ÆÆÆ
¨

(a) A simple quantum neural network to perform MNIST im-
age classi�cation task in TorchQuantum’s tutorial.

� ) )

� ) )

� ) (-

� ) )

(b) A quantum supremacy algorithm with a 2⇥ 2 qubits layout
with four layers.

Figure 2: Examples of Quantum Machine Learning and
Supremacy Algorithms

In quantum circuits, each quantum gate *8 only non-trivially
operates on one or two qubits. For example, if *8 represents a
Hadamard gate on the �rst qubit, then *8 = � ⌦ �=�1, where �=�1
is a 2=�1 ⇥ 2=�1 identity matrix applied on the rest = � 1 qubits.
See the gates in Figure 2.

Gate 
Errors Measurement 

Errors

Qubit 
Crosstalk

Circuit Depth 
Constraints

Two-Qubit Gate 
Constraints

Limited Accuracy of 
Computational Results

目前NISQ时代，量子计算已
经展现值得注意的科学价值

步入Beyond-NISQ时代，
量子计算需要在有商业价值

的应用上展示优势

John Preskill
NISQ提出者

Q2B 24
会议

支撑实现

1.1 研究背景：步入Beyond-NISQ时代的噪声问题

基础物理、算法到系统工程的全流程协同
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Quantum Machine Learning Algorithm (Variational Circuit)小规模量子机器学习算法已经在真实量子芯片上成功执行实际任务

Phys. Rev. Applied (2021)
Image Generation

Nature (2019)
Artificial Data Classification

Nat. Commun (2022)
Quantum Phase Recognition

Science Bulletin (2023)
Structure recognition of 

quantum many-body systems

1.1 研究背景：量子机器学习算法展现抗噪声能力与应用前景

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Ji Guan, Wang Fang, Mingyu Huang, & Mingsheng Ying

Figure 1: The Computational Model of Quantum Algorithms.

(I) 1-qubit (parameterized) logic gates (2 → 2 unitary matrices):

𝐿 =

(
0 1
1 0

)
𝑀 =

(
0 ↑𝑁
𝑁 0

)
𝑂 =

(
1 0
0 ↑1

)

𝑃 =
1↓
2

(
1 1
1 ↑1

)
𝑄 =

(
1 0
0 𝑁

)
𝑅 =

(
1 0
0 𝑆𝐿𝑀/4

)
.

(II) 1-qubit rotation gates that are rotation operators along 𝑇,𝑈, 𝑉-
axis by angle 𝑊 , respectively:

𝑋𝑁 (𝑊 ) = 𝑆↑𝐿𝑂𝑃/2 = cos 𝑊2 𝑌 ↑ 𝑁 sin 𝑊

2𝐿 =

(
cos 𝑂

2 ↑𝑁 sin 𝑂
2

↑𝑁 sin 𝑂
2 cos 𝑂

2

)

𝑋𝑄 (𝑊 ) = 𝑆↑𝐿𝑂𝑅/2 = cos 𝑊2 𝑌 ↑ 𝑁 sin 𝑊

2𝑀 =

(
cos 𝑂

2 ↑ sin 𝑂
2

sin 𝑂
2 cos 𝑂

2

)

𝑋𝑆 (𝑊 ) = 𝑆↑𝐿𝑂𝑇/2 = cos 𝑊2 𝑌 ↑ 𝑁 sin 𝑊

2𝑂 =

(
𝑆↑𝐿𝑂/2 0

0 𝑆𝐿𝑂/2

)
.

Rotation gates 𝑋𝑁 (𝑊 ),𝑋𝑄 (𝑊 ),𝑋𝑆 (𝑊 ) are widely used to encode
classical data into quantum states and also construct quantum
machine learning models (parameterized quantum circuits).
These will be detailed in the later discussion.

(III) 2-qubit Controlled-U gates (4 → 4 unitary matrices): For any
1-qubit logic gate𝑍 , we can get a 2-qubit logic gate — controlled-
𝑍 (CU) gate, applying 𝑍 on the second qubit (the target qubit)
if and only if the !rst qubit (the control qubit) is |1↔. See the
following instances:
(1) CNOT: CX gate is also known as controlled NOT (CNOT)

gate and has a special circuit representation:

CX = =
#$$$
%

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

&'''
(
.

(2) CZ gate:

CZ = =
#$$$
%

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ↑1

&'''
(

(3) Controlled parameterized gates: For example, the controlled
Pauli X rotation gate with rotation angle 𝑊 is:

𝑋𝑁 (𝑊 )
=
#$$$
%

1 0 0 0
0 1 0 0
0 0 cos 𝑂

2 ↑𝑁 sin 𝑂
2

0 0 ↑𝑁 sin 𝑂
2 cos 𝑂

2

&'''
(
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(a) A simple quantum neural network to perform MNIST im-
age classi!cation task in TorchQuantum’s tutorial.
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𝑃 𝑅 𝑄𝐿
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(b) A quantum supremacy algorithm with a 2→ 2 qubits layout
with four layers.

Figure 2: Examples of Quantum Machine Learning and
Supremacy Algorithms

In quantum circuits, each quantum gate 𝑍𝐿 only non-trivially
operates on one or two qubits. For example, if 𝑍𝐿 represents a
Hadamard gate on the !rst qubit, then 𝑍𝐿 = 𝑃 ↗ 𝑌𝑈↑1, where 𝑌𝑈↑1
is a 2𝑈↑1 → 2𝑈↑1 identity matrix applied on the rest 𝑎 ↑ 1 qubits.
See the gates in Figure 2.
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Physical Implementation小规模量子机器学习算法已经在真实量子芯片上成功执行实际任务

Phys. Rev. Applied (2021)
Image Generation

Nature (2019)
Artificial Data Classification

Nat. Commun (2022)
Quantum Phase Recognition

Science Bulletin (2023)
Structure recognition of 

quantum many-body systems

1.1 研究背景：量子机器学习算法展现抗噪声能力与应用前景

CCS ’23, November 26–30, 2023, Copenhagen, Denmark Ji Guan, Wang Fang, Mingyu Huang, & Mingsheng Ying

Figure 1: The Computational Model of Quantum Algorithms.

(I) 1-qubit (parameterized) logic gates (2 → 2 unitary matrices):

𝐿 =

(
0 1
1 0

)
𝑀 =

(
0 ↑𝑁
𝑁 0

)
𝑂 =

(
1 0
0 ↑1

)

𝑃 =
1↓
2

(
1 1
1 ↑1

)
𝑄 =

(
1 0
0 𝑁

)
𝑅 =

(
1 0
0 𝑆𝐿𝑀/4

)
.

(II) 1-qubit rotation gates that are rotation operators along 𝑇,𝑈, 𝑉-
axis by angle 𝑊 , respectively:

𝑋𝑁 (𝑊 ) = 𝑆↑𝐿𝑂𝑃/2 = cos 𝑊2 𝑌 ↑ 𝑁 sin 𝑊
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)

𝑋𝑄 (𝑊 ) = 𝑆↑𝐿𝑂𝑅/2 = cos 𝑊2 𝑌 ↑ 𝑁 sin 𝑊

2𝑀 =

(
cos 𝑂

2 ↑ sin 𝑂
2
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2 cos 𝑂

2

)

𝑋𝑆 (𝑊 ) = 𝑆↑𝐿𝑂𝑇/2 = cos 𝑊2 𝑌 ↑ 𝑁 sin 𝑊

2𝑂 =

(
𝑆↑𝐿𝑂/2 0

0 𝑆𝐿𝑂/2

)
.

Rotation gates 𝑋𝑁 (𝑊 ),𝑋𝑄 (𝑊 ),𝑋𝑆 (𝑊 ) are widely used to encode
classical data into quantum states and also construct quantum
machine learning models (parameterized quantum circuits).
These will be detailed in the later discussion.

(III) 2-qubit Controlled-U gates (4 → 4 unitary matrices): For any
1-qubit logic gate𝑍 , we can get a 2-qubit logic gate — controlled-
𝑍 (CU) gate, applying 𝑍 on the second qubit (the target qubit)
if and only if the !rst qubit (the control qubit) is |1↔. See the
following instances:
(1) CNOT: CX gate is also known as controlled NOT (CNOT)

gate and has a special circuit representation:

CX = =
#$$$
%

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

&'''
(
.

(2) CZ gate:

CZ = =
#$$$
%

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 ↑1

&'''
(

(3) Controlled parameterized gates: For example, the controlled
Pauli X rotation gate with rotation angle 𝑊 is:

𝑋𝑁 (𝑊 )
=
#$$$
%

1 0 0 0
0 1 0 0
0 0 cos 𝑂
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(a) A simple quantum neural network to perform MNIST im-
age classi!cation task in TorchQuantum’s tutorial.

𝑃 𝑅 𝑅

𝑃 𝑅 𝑅

𝑃 𝑅 𝑄𝐿

𝑃 𝑅 𝑅

(b) A quantum supremacy algorithm with a 2→ 2 qubits layout
with four layers.

Figure 2: Examples of Quantum Machine Learning and
Supremacy Algorithms

In quantum circuits, each quantum gate 𝑍𝐿 only non-trivially
operates on one or two qubits. For example, if 𝑍𝐿 represents a
Hadamard gate on the !rst qubit, then 𝑍𝐿 = 𝑃 ↗ 𝑌𝑈↑1, where 𝑌𝑈↑1
is a 2𝑈↑1 → 2𝑈↑1 identity matrix applied on the rest 𝑎 ↑ 1 qubits.
See the gates in Figure 2.
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Quantum (Machine Learning) Classifiers

ρ E {Mc}c∈C c = A(ρ)

Figure: Quantum classifier pipeline. The input quantum state ρ is processed by
a quantum channel E , followed by measurement via a POVM {Mc}c∈C , to
produce a classical class label c = A(ρ).

Formally, a quantum classifier over the Hilbert space H is defined as a pair:

A = (E , {Mc}c∈C),

Given an input quantum state ρ ∈ D(H), the classifier outputs a label
determined by the most probable measurement outcome:

A(ρ) := arg max
c∈C

Tr[McE(ρ)],

where Tr[McE(ρ)] is the probability of obtaining outcome c upon
measuring the output state E(ρ) of E with the POVM {Mc}c∈C .
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Visualizing Quantum Classifiers
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E
(Noisy) Quantum Circuits
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Figure 1: The Computational Model of Quantum Algorithms.

(I) 1-qubit (parameterized) logic gates (2 ⇥ 2 unitary matrices):

- =

✓
0 1
1 0

◆
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0 �8
8 0
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1 0
0 �1
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1 1
1 �1

◆
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1 0
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(II) 1-qubit rotation gates that are rotation operators along G,~, I-
axis by angle \ , respectively:

'G (\ ) = 4�8\-/2 = cos \2 � � 8 sin \

2- =

✓
cos \

2 �8 sin \
2

�8 sin \
2 cos \

2

◆

'~ (\ ) = 4�8\./2 = cos \2 � � 8 sin \

2. =

✓
cos \

2 � sin \
2

sin \
2 cos \

2

◆

'I (\ ) = 4�8\//2 = cos \2 � � 8 sin \

2/ =

✓
4�8\/2 0

0 48\/2

◆
.

Rotation gates 'G (\ ),'~ (\ ),'I (\ ) are widely used to encode
classical data into quantum states and also construct quantum
machine learning models (parameterized quantum circuits).
These will be detailed in the later discussion.

(III) 2-qubit Controlled-U gates (4 ⇥ 4 unitary matrices): For any
1-qubit logic gate* , we can get a 2-qubit logic gate — controlled-
* (CU) gate, applying * on the second qubit (the target qubit)
if and only if the �rst qubit (the control qubit) is |1i. See the
following instances:
(1) CNOT: CX gate is also known as controlled NOT (CNOT)

gate and has a special circuit representation:

CX = =
©≠≠≠
´

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

™ÆÆÆ
¨
.

(2) CZ gate:

CZ = =
©≠≠≠
´

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 �1

™ÆÆÆ
¨

(3) Controlled parameterized gates: For example, the controlled
Pauli X rotation gate with rotation angle \ is:

'G (\ )
=
©≠≠≠
´

1 0 0 0
0 1 0 0
0 0 cos \

2 �8 sin \
2

0 0 �8 sin \
2 cos \

2

™ÆÆÆ
¨

(a) A simple quantum neural network to perform MNIST im-
age classi�cation task in TorchQuantum’s tutorial.

� ) )

� ) )

� ) (-

� ) )

(b) A quantum supremacy algorithm with a 2⇥ 2 qubits layout
with four layers.

Figure 2: Examples of Quantum Machine Learning and
Supremacy Algorithms

In quantum circuits, each quantum gate *8 only non-trivially
operates on one or two qubits. For example, if *8 represents a
Hadamard gate on the �rst qubit, then *8 = � ⌦ �=�1, where �=�1
is a 2=�1 ⇥ 2=�1 identity matrix applied on the rest = � 1 qubits.
See the gates in Figure 2.

Figure: The Computational Model of Quantum Classifiers
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Famous Classical Adversarial Example

Figure: Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy [ICLR 2015]

Adversarial examples (the right picture): inputs to a machine learning
algorithm cause the algorithm to make a mistake.
Safety issue: machine learning algorithms are vulnerable to
intentionally-crafted adversarial examples.
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Robustness Studies

Motivation:
Quantum noise at the present of NISQ (Noisy Intermediate-Scale
Quantum) era;
Quantum classifier is principled by quantum mechanics (hard to be
explained to the end users), so verifying the robustness is essential
(Toward to trustworthy quantum AI).

Challenges:
The attacker is quantum noise from the unknown environment.
Due to the statistical nature of quantum mechanics, quantum
machine learning models are randomized.

Core Problem:
Verifying Robustness → Identifying Adversarial Examples → Improving
Robustness (e.g. Adversarial Training)
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Specific Attack Studies

5真实量子芯片噪声复杂未知、无处不在，提升噪声鲁棒性极具挑战

针对特定噪声攻击的量子机器学习算法鲁棒性的理论研究已开展

Classical Noise Unitary Noise Depolarizing Noise Rotation Gate Noise

Phys. Rev. Res (2020) Phys. Rev. A (2020) Phys. Rev. Res (2021) ICASSP (2023）

Classical 
Noise Unitary 

Noise

Depolarizing 
Noise

Rotation 
Gate Noise

1.1 研究背景：量子机器学习算法的（抗噪声）鲁棒性理论

The attack should be unknown.
The internal structure of noisy quantum circuits is not accessible and a
black box.
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Adversarial Examples

Definition (Adversarial Example)
Let A be a quantum classifier, ρ ∈ D(H) an input state, and ε > 0 a
perturbation threshold. A quantum state σ is called an ε-adversarial
example of ρ if

A(σ) ̸= A(ρ) and DF (ρ, σ) ≤ ε.

If such a state σ exists, then ε is referred to as an adversarial perturbation
of ρ. The fidelity distance (also called infidelity) between two quantum
states is defined as

DF (ρ, σ) := 1 − F (ρ, σ).

Definition (Adversarial Robustness)

A quantum classifier A is said to be ε-robust at state ρ if there exists no
ε-adversarial example of ρ.

14 / 35



Adversarial ε-Robustness

Definition (Robustness Radius)
Let A be a quantum classifier and ρ a correctly classified input state. The
robustness radius of ρ, denoted ε∗(ρ), is the maximum value ε such that
A is ε-robust at ρ:

ε∗(ρ) := sup
σ∈D(H)

A(σ)=A(ρ)

DF (ρ, σ).

Problem (Robustness Verification Problem)

Given a quantum classifier A, an input state ρ ∈ D(H), and a threshold
ε > 0, determine whether

ε ≤ ε∗(ρ).

If so, A is ε-robust at ρ; otherwise, ε is an adversarial perturbation, and a
violating state σ can be returned as an ε-adversarial example.
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Optimal Robustness Bound via Semidefinite Programming

Theorem (Optimal Robustness Bound via SDP, CAV 2021)
Let A = (E , {Mc}c∈C) be a quantum classifier. The exact robustness
radius is given by

ε∗(ρ) = min
c∈C

c ̸=A(ρ)

ε∗
c(ρ),

where each ε∗
c(ρ) is the solution to the following SDP:

minimize: DF (ρ, σ)
subject to: σ ⪰ 0,

Tr(σ) = 1,

Tr[(MA(ρ) − Mc)E(σ)] ≤ 0.

If this SDP is infeasible for some c, then ε∗
c(ρ) = ∞, indicating that no

adversarial example of ρ exists which is misclassified as class c.
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Robustness Lower Bound via Measurement Distribution

Theorem (Robustness Lower Bound from Measurement Distribution
CAV 2021)

Let ρ ∈ D(H) and c∗ = A(ρ). Then

εRLB(ρ) := min
c ̸=c∗

1
2

(√
pρ

c∗ −
√

pρ
c

)2

is a certified robustness lower bound: for all σ such that
DF (ρ, σ) ≤ εRLB(ρ), it holds that A(σ) = A(ρ). Here, pρ

c := Tr[McE(ρ)].

Efficient to Compute. Directly from measurement outcomes
without searching for adversarial perturbations. Fast robustness
certification and dataset-level evaluation of robust accuracy.
Model-agnostic: No access to the internal structure of E , this bound
is particularly suited for hardware-level evaluation. In real-device
settings, estimate pρ

c by repeated execution of E on quantum hardware
and compute εRLB(ρ) from the empirical outcome distribution.
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Robustness Upper Bound via Attack Generation

Definition (Empirical Robustness Upper Bound)

Let ρ ∈ D(H) be an input quantum state. An adversarial attack method
constructs a perturbed state σadv such that:

A(σadv) ̸= A(ρ), and εRUB(ρ) := DF (ρ, σadv),

where DF is the fidelity distance. Then, εRUB(ρ) serves as an empirical
robustness upper bound for ε∗(ρ).
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Attack Method: FGSM and Mask FGSM

Fast Gradient Sign Method (FGSM):

x ′ = x + ε · sgn(∇xL),

where ε is the perturbation magnitude, ∇xL is the gradient of the loss L.
Mask FGSM (localized variant)[arXiv:2505.16714]:

δi =

ε · sgn
(

∂L
∂xi

)
, mi = 1,

0, mi = 0,

with binary mask M = (m1, m2, . . . , mdim(x))T selecting which input
features are perturbed.
Key point: Achieves efficient and effective adversarial sample generation
in QML, validated experimentally on EMNIST and LCEI tasks.
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Visualizing the Bounds

Adversarial attack region εRUB

Optimal robustness ε∗

Certified region εRLB

ρ

εRLB

ε∗

εRUB
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Sandwich Theorem

Theorem (Sandwich Robustness Bound)
Given a quantum input state ρ, a certified lower bound εRLB(ρ)
(Theorem 6), and an adversarially generated state σadv, we have:

εRLB(ρ) ≤ ε∗(ρ) ≤ εRUB(ρ), (1)

where εRUB(ρ) = DF (ρ, σadv).

εRLB(ρ): a certified lower bound used for formal robustness
guarantees;
ε∗(ρ): the exact robustness radius, computable via SDP;
εRUB(ρ): an empirical upper bound derived from adversarial attacks.

Tightness Assessment. The gap ∆ := εRUB(ρ) − εRLB(ρ) quantifies the
precision of the robustness estimation. The observed gap between the two
bounds is typically less than 3 × 10−3, demonstrating that εRLB(ρ)
provides a tight and practically useful certificate of robustness.
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Robustness Verification Algorithms

Robustness can be aggregated across a dataset to evaluate a classifier’s
overall robustness:

Definition (Robust Accuracy)

Let A be a quantum classifier. The ε-robust accuracy of A is the
proportion of correctly classified input states in the dataset that are also
ε-robust.

Robustness Verification Algorithms:
State Robustness Verification: SDP.
Under-approximate Robustness Verification: robustness lower bound.
Exact Classifier Robustness Verification: robustness lower bound and
SDP.
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Robustness Verification Algorithms: N = 2n for n qubits

Robustness Verification Algorithms
Robustness Lower

Bound
Robustness Optimal

Bound
Mixed Strategy

Method Matrix
Multiplication (MM)

Semidefinite
Programming (SDP)

MM & SDP

Complexity O(|T | · |C| · N5) O(|T | · |C| · N6.5) O(|T ′| · |C| · N6.5)
Robust Accuracy Under-approximate Exact Exact

Table: Summary of robustness verification algorithms based on different bounds.

T : the set of training data;
T ′: a subset of T obtained by robust bound;
C: the set of measurement outcomes;
N: the dimension of state space H.

In practice: |T ′| ≪ |T | ⇒Robustness lower bound is tight.
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System Architecture of VeriQR.
VeriQR is available at https://github.com/Veri-Q/VeriQR.

Noise 
Generator

Specified noise 
type

Random noise
(default)Parser

Constraint Generator

Core Verifier Exact Verification
 (Algorithm 2)

Statistics and Visualization

QML model

noise probability noise type

dataset

pure | mixed
quantum state type 

robust accuracy 
(%)

noisy quantum circuit adversarial examples

Noisy quantum model 

0
⟩|

1
⟩|

0 1

robustness 
threshold 𝜀

Under-approximate 
Verification

(Algorithm 3)
Adversarial Training

Improving Robustness

QCQP | SDP 
Constraint

Measurement 
Distribution

Figure: System architecture of VeriQR.
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Functions𝑉𝑒𝑟𝑖𝑄𝑅: Local Robustness Verification 

Lin, Yanling, et al., VeriQR: A Robustness Verification Tool for Quantum Machine Learning Models 13

l Parser: parses the input quantum 
classification model to obtain the 
corresponding quantum circuit object

l Noise Generator: adds random noise to 
the quantum circuit (to simulate the noise 
effect of a real device) and enables the 
user to add custom noise to generates a 
noisy quantum model

l Constraint Generator: generates 
nonlinear constraints based on a noisy 
quantum model and dataset

l Core Verifier: takes constraints, a perturbation parameter 𝜀, and quantum state types as 
input and uses approximate and exact algorithms to initiate the verification analysis process 
for 𝜀-robustness

l Statistics and Visualization: displays and visualizes output in VeriQR’s GUI component, 
including robust accuracy, adversarial examples and quantum circuits 
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GUI
𝑉𝑒𝑟𝑖𝑄𝑅: GUI

Lin, Yanling, et al., VeriQR: A Robustness Verification Tool for Quantum Machine Learning Models 15
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Experimental Schematic for QNN Evaluation
a b

c

e f g

d

a, The superconducting quantum processor, comprising 72 qubits and
20 qubits selected for the experiment are highlighted in green.
b, Architecture of the quantum neural network (QNN) classifier.
c, Sample visualization of handwritten letters “Q” and “T” from the
EMNIST dataset, used for the classical image classification task.
d, Quantum circuit used to generate the Linear Cluster State
Excitation Identification (LCEI) dataset. States are labeled as
“excited” or “non-excited” based on the rotation angle α.
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Robustness Bound Verification Experiments
a

c

b

d

Tightness of Robustness Bounds: validate the near-optimality of
the Mask FGSM attack strategy and the tightness of the lower bound.
Improvement through Adversarial Training: adversarial training
significantly increased the mean certified robustness lower bound by a
factor of 4.22 in EMNIST and 4.74 in LCEI. 31 / 35
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Takeaway
Summary of quantum adversarial robustness verification:

Theory: Robustness bounds and verification algorithms CAV 2021
Tool: Robustness verification tool VeriQR FM 2024
Physical Validation: Experimental robustness benchmark on
superconducting hardware arXiv:2505.16714

Review Book Chapter
Verifying Adversarial Robustness in Quan-
tum Machine Learning: From Theory to
Physical Validation via a Software Tool
Quantum Robustness in Artificial Intelli-
gence (Springer, online soon)

Other Trustworthy Quantum Algorithm Works:
Fairness: Individual fairness (global robustness) verification of
quantum algorithms CAV 2022
Privacy: Differential privacy for quantum algorithms: formal
verification and optimal mechanisms ACM CCS 2023 and 2025 33 / 35
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Thanks!
My excellent collaborators: Mingsheng Ying, Wang Fang, Mingyu Huang, and

USTC’s quantum hardware physical group

Email: guanji1992@gmail.com
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