Verifying Adversarial Robustness in Quantum Machine Learning:

From Theory to Physical Validation via a Software Tool

Ji Guan guanji1992@gmail.com

Institute of Software, Chinese Academy of Sciences, China

July 21, 2025

- Why Quantum Machine Learning?
- Quantum Adversarial Robustness Verification
- 3 Robustness Verification Algorithms
- VeriQR: A Tool for Robustness Verification
- 5 Experimental Robustness Benchmark on Superconducting Hardware
- 6 Takeaway

- Why Quantum Machine Learning?
- 2 Quantum Adversarial Robustness Verification
- Robustness Verification Algorithms
- 4 VeriQR: A Tool for Robustness Verification
- Experimental Robustness Benchmark on Superconducting Hardware
- 6 Takeaway

Recent Progress

Scientific Advantages \Rightarrow Practical Advantages

Circuit Noise

Quantum Machine Learning Algorithm (Variational Circuit)

Physical Implementation

- Why Quantum Machine Learning?
- Quantum Adversarial Robustness Verification
- Robustness Verification Algorithms
- 4 VeriQR: A Tool for Robustness Verification
- Experimental Robustness Benchmark on Superconducting Hardware
- 6 Takeaway

Quantum (Machine Learning) Classifiers

Figure: Quantum classifier pipeline. The input quantum state ρ is processed by a quantum channel \mathcal{E} , followed by measurement via a POVM $\{M_c\}_{c\in\mathcal{C}}$, to produce a classical class label $c=\mathcal{A}(\rho)$.

Formally, a quantum classifier over the Hilbert space $\ensuremath{\mathcal{H}}$ is defined as a pair:

$$\mathcal{A} = (\mathcal{E}, \{M_c\}_{c \in \mathcal{C}}),$$

Given an input quantum state $\rho\in\mathcal{D}(\mathcal{H})$, the classifier outputs a label determined by the most probable measurement outcome:

$$\mathcal{A}(\rho) := \arg \max_{c \in \mathcal{C}} \operatorname{Tr}[M_c \mathcal{E}(\rho)],$$

where $\mathrm{Tr}[M_c\mathcal{E}(\rho)]$ is the probability of obtaining outcome c upon measuring the output state $\mathcal{E}(\rho)$ of \mathcal{E} with the POVM $\{M_c\}_{c\in\mathcal{C}}$.

Visualizing Quantum Classifiers

Figure: The Computational Model of Quantum Classifiers

Famous Classical Adversarial Example

Figure: Ian J. Goodfellow, Jonathon Shlens, Christian Szegedy [ICLR 2015]

Adversarial examples (the right picture): inputs to a machine learning algorithm cause the algorithm to make a mistake.

Safety issue: machine learning algorithms are vulnerable to intentionally-crafted adversarial examples.

Robustness Studies

Motivation:

- Quantum noise at the present of NISQ (Noisy Intermediate-Scale Quantum) era;
- Quantum classifier is principled by quantum mechanics (hard to be explained to the end users), so verifying the robustness is essential (Toward to trustworthy quantum Al).

Challenges:

- The attacker is quantum noise from the unknown environment.
- Due to the statistical nature of quantum mechanics, quantum machine learning models are randomized.

Core Problem:

Verifying Robustness \rightarrow Identifying Adversarial Examples \rightarrow Improving Robustness (e.g. Adversarial Training)

Specific Attack Studies

The attack should be unknown.

The internal structure of noisy quantum circuits is not accessible and a black box.

Adversarial Examples

Definition (Adversarial Example)

Let $\mathcal A$ be a quantum classifier, $\rho\in\mathcal D(\mathcal H)$ an input state, and $\varepsilon>0$ a perturbation threshold. A quantum state σ is called an ε -adversarial example of ρ if

$$\mathcal{A}(\sigma) \neq \mathcal{A}(\rho)$$
 and $D_F(\rho, \sigma) \leq \varepsilon$.

If such a state σ exists, then ε is referred to as an adversarial perturbation of ρ . The fidelity distance (also called *infidelity*) between two quantum states is defined as

$$D_F(\rho,\sigma):=1-F(\rho,\sigma).$$

Definition (Adversarial Robustness)

A quantum classifier $\mathcal A$ is said to be ε -robust at state ρ if there exists no ε -adversarial example of ρ .

Adversarial ε -Robustness

Definition (Robustness Radius)

Let $\mathcal A$ be a quantum classifier and ρ a correctly classified input state. The robustness radius of ρ , denoted $\varepsilon^*(\rho)$, is the maximum value ε such that $\mathcal A$ is ε -robust at ρ :

$$\varepsilon^*(\rho) := \sup_{\substack{\sigma \in \mathcal{D}(\mathcal{H}) \\ \mathcal{A}(\sigma) = \mathcal{A}(\rho)}} D_F(\rho, \sigma).$$

Problem (Robustness Verification Problem)

Given a quantum classifier A, an input state $\rho \in \mathcal{D}(\mathcal{H})$, and a threshold $\varepsilon > 0$, determine whether

$$\varepsilon \leq \varepsilon^*(\rho)$$
.

If so, $\mathcal A$ is ε -robust at ρ ; otherwise, ε is an adversarial perturbation, and a violating state σ can be returned as an ε -adversarial example.

Optimal Robustness Bound via Semidefinite Programming

Theorem (Optimal Robustness Bound via SDP, CAV 2021)

Let $A = (\mathcal{E}, \{M_c\}_{c \in \mathcal{C}})$ be a quantum classifier. The exact robustness radius is given by

$$\varepsilon^*(\rho) = \min_{\substack{c \in \mathcal{C} \\ c \neq \mathcal{A}(\rho)}} \varepsilon_c^*(\rho),$$

where each $\varepsilon_c^*(\rho)$ is the solution to the following SDP:

minimize:
$$D_F(\rho, \sigma)$$

subject to: $\sigma \succeq 0$,
 $\mathrm{Tr}(\sigma) = 1$,
 $\mathrm{Tr}[(M_{\mathcal{A}(\rho)} - M_c)\mathcal{E}(\sigma)] \leq 0$.

If this SDP is infeasible for some c, then $\varepsilon_c^*(\rho) = \infty$, indicating that no adversarial example of ρ exists which is misclassified as class c.

Robustness Lower Bound via Measurement Distribution

Theorem (Robustness Lower Bound from Measurement Distribution CAV 2021)

Let $\rho \in \mathcal{D}(\mathcal{H})$ and $c^* = \mathcal{A}(\rho)$. Then

$$arepsilon_{ ext{RLB}}(
ho) := \min_{c
eq c^*} rac{1}{2} \left(\sqrt{oldsymbol{p}_{c^*}^{
ho}} - \sqrt{oldsymbol{p}_c^{
ho}}
ight)^2$$

is a certified robustness lower bound: for all σ such that $D_F(\rho, \sigma) \leq \varepsilon_{\mathrm{RLB}}(\rho)$, it holds that $\mathcal{A}(\sigma) = \mathcal{A}(\rho)$. Here, $p_c^{\rho} := \mathrm{Tr}[M_c \mathcal{E}(\rho)]$.

- Efficient to Compute. Directly from measurement outcomes without searching for adversarial perturbations. Fast robustness certification and dataset-level evaluation of robust accuracy.
- Model-agnostic: No access to the internal structure of \mathcal{E} , this bound is particularly suited for hardware-level evaluation. In real-device settings, estimate p_c^{ρ} by repeated execution of \mathcal{E} on quantum hardware and compute $\varepsilon_{\mathrm{RLB}}(\rho)$ from the empirical outcome distribution.

Robustness Upper Bound via Attack Generation

Definition (Empirical Robustness Upper Bound)

Let $\rho \in \mathcal{D}(\mathcal{H})$ be an input quantum state. An adversarial attack method constructs a perturbed state σ_{adv} such that:

$$\mathcal{A}(\sigma_{\mathsf{adv}})
eq \mathcal{A}(
ho), \quad \mathsf{and} \quad arepsilon_{\mathrm{RUB}}(
ho) := D_{\mathit{F}}(
ho, \sigma_{\mathsf{adv}}),$$

where D_F is the fidelity distance. Then, $\varepsilon_{\text{RUB}}(\rho)$ serves as an *empirical* robustness upper bound for $\varepsilon^*(\rho)$.

Attack Method: FGSM and Mask FGSM

Fast Gradient Sign Method (FGSM):

$$\mathbf{x}' = \mathbf{x} + \varepsilon \cdot \operatorname{sgn}(\nabla_{\mathbf{x}} \mathcal{L}),$$

where ε is the perturbation magnitude, $\nabla_{\mathbf{x}} \mathcal{L}$ is the gradient of the loss \mathcal{L} .

Mask FGSM (localized variant)[arXiv:2505.16714]:

$$\delta_i = egin{cases} arepsilon \cdot \mathsf{sgn}\left(rac{\partial \mathcal{L}}{\partial \mathsf{x}_i}
ight), & m_i = 1, \ 0, & m_i = 0, \end{cases}$$

with binary mask $\mathcal{M} = (m_1, m_2, \dots, m_{\dim(\mathbf{x})})^T$ selecting which input features are perturbed.

Key point: Achieves efficient and effective adversarial sample generation in QML, validated experimentally on EMNIST and LCEI tasks.

Visualizing the Bounds

Sandwich Theorem

Theorem (Sandwich Robustness Bound)

Given a quantum input state ρ , a certified lower bound $\varepsilon_{RLB}(\rho)$ (Theorem 6), and an adversarially generated state σ_{adv} , we have:

$$\varepsilon_{\text{RLB}}(\rho) \le \varepsilon^*(\rho) \le \varepsilon_{\text{RUB}}(\rho),$$
 (1)

where $\varepsilon_{\text{RUB}}(\rho) = D_F(\rho, \sigma_{\text{adv}})$.

- $\varepsilon_{\rm RLB}(\rho)$: a certified lower bound used for formal robustness guarantees;
- $\varepsilon^*(\rho)$: the exact robustness radius, computable via SDP;
- ullet $\varepsilon_{\mathrm{RUB}}(
 ho)$: an empirical upper bound derived from adversarial attacks.

Tightness Assessment. The gap $\Delta := \varepsilon_{\mathrm{RUB}}(\rho) - \varepsilon_{\mathrm{RLB}}(\rho)$ quantifies the precision of the robustness estimation. The observed gap between the two bounds is typically less than 3×10^{-3} , demonstrating that $\varepsilon_{\mathrm{RLB}}(\rho)$ provides a tight and practically useful certificate of robustness.

- Why Quantum Machine Learning?
- Quantum Adversarial Robustness Verification
- 3 Robustness Verification Algorithms
- 4 VeriQR: A Tool for Robustness Verification
- Experimental Robustness Benchmark on Superconducting Hardware
- Takeaway

Robustness Verification Algorithms

Robustness can be aggregated across a dataset to evaluate a classifier's overall robustness:

Definition (Robust Accuracy)

Let $\mathcal A$ be a quantum classifier. The ε -robust accuracy of $\mathcal A$ is the proportion of correctly classified input states in the dataset that are also ε -robust.

Robustness Verification Algorithms:

- State Robustness Verification: SDP.
- Under-approximate Robustness Verification: robustness lower bound.
- Exact Classifier Robustness Verification: robustness lower bound and SDP.

Robustness Verification Algorithms: $N = 2^n$ for n qubits

Robustness Verification Algorithms			
	Robustness Lower	Robustness Optimal	Mixed Strategy
	Bound	Bound	
Method	Matrix	Semidefinite	MM & SDP
	Multiplication (MM)	Programming (SDP)	
Complexity	$O(T \cdot \mathcal{C} \cdot N^5)$	$O(T \cdot \mathcal{C} \cdot N^{6.5})$	$O(T' \cdot \mathcal{C} \cdot N^{6.5})$
Robust Accuracy	Under-approximate	Exact	Exact

Table: Summary of robustness verification algorithms based on different bounds.

- T: the set of training data;
- T': a subset of T obtained by robust bound;
- ullet \mathcal{C} : the set of measurement outcomes;
- N: the dimension of state space \mathcal{H} .

In practice: $|T'| \ll |T| \Rightarrow \text{Robustness lower bound is tight.}$

- Why Quantum Machine Learning?
- Quantum Adversarial Robustness Verification
- Robustness Verification Algorithms
- 4 VeriQR: A Tool for Robustness Verification
- Experimental Robustness Benchmark on Superconducting Hardware
- 6 Takeaway

System Architecture of VERIQR.

VeriQR is available at https://github.com/Veri-Q/VeriQR.

Functions

- Parser: parses the input quantum classification model to obtain the corresponding quantum circuit object
- Noise Generator: adds random noise to the quantum circuit (to simulate the noise effect of a real device) and enables the user to add custom noise to generates a noisy quantum model
- Constraint Generator: generates nonlinear constraints based on a noisy quantum model and dataset

- Core Verifier: takes constraints, a perturbation parameter ε, and quantum state types as input and uses approximate and exact algorithms to initiate the verification analysis process for ε-robustness
- Statistics and Visualization: displays and visualizes output in VeriQR's GUI component, including robust accuracy, adversarial examples and quantum circuits

GUI

- Why Quantum Machine Learning?
- Quantum Adversarial Robustness Verification
- Robustness Verification Algorithms
- 4 VeriQR: A Tool for Robustness Verification
- 5 Experimental Robustness Benchmark on Superconducting Hardware
- 6 Takeaway

Experimental Schematic for QNN Evaluation

- a, The superconducting quantum processor, comprising 72 qubits and 20 qubits selected for the experiment are highlighted in green.
- **b**, Architecture of the quantum neural network (QNN) classifier.
- c, Sample visualization of handwritten letters "Q" and "T" from the EMNIST dataset, used for the classical image classification task.
- d, Quantum circuit used to generate the Linear Cluster State Excitation Identification (LCEI) dataset. States are labeled as "excited" or "non-excited" based on the rotation angle α .

Robustness Bound Verification Experiments

- **Tightness of Robustness Bounds:** validate the near-optimality of the Mask FGSM attack strategy and the tightness of the lower bound.
- Improvement through Adversarial Training: adversarial training significantly increased the mean certified robustness lower bound by a factor of 4.22 in EMNIST and 4.74 in LCEI.

- Why Quantum Machine Learning?
- Quantum Adversarial Robustness Verification
- Robustness Verification Algorithms
- 4 VeriQR: A Tool for Robustness Verification
- Experimental Robustness Benchmark on Superconducting Hardware
- Takeaway

Takeaway

Summary of quantum adversarial robustness verification:

- Theory: Robustness bounds and verification algorithms CAV 2021
- Tool: Robustness verification tool VERIQR FM 2024
- Physical Validation: Experimental robustness benchmark on superconducting hardware arXiv:2505.16714

Review Book Chapter

Verifying Adversarial Robustness in Quantum Machine Learning: From Theory to Physical Validation via a Software Tool Quantum Robustness in Artificial Intelligence (Springer, online soon)

Other Trustworthy Quantum Algorithm Works:

- Fairness: Individual fairness (global robustness) verification of quantum algorithms CAV 2022
- Privacy: Differential privacy for quantum algorithms: formal verification and optimal mechanisms ACM CCS 2023 and 2025

References

- Guan J., Fang W., Ying M. (2021) Robustness Verification of Quantum Classifiers. (CAV 2021)
- Guan J., Fang, W. and Ying, M., 2022. Verifying Fairness in Quantum Machine Learning. (CAV 2022)
- Lin, Y., Guan, J., Fang, W., Ying, M. and Su, Z., 2024, September.
 A Robustness Verification Tool for Quantum Machine Learning Models. (FM 2024).
- Guan, J., Fang, W., Huang, M. and Ying, M., 2023, November.
 Detecting violations of differential privacy for quantum algorithms.
 (ACM CCS 2023)
- Guan, J., 2025. Optimal Mechanisms for Quantum Local Differential Privacy. (ACM CCS 2025).
- Zhang, H.F., Chen, Z.Y., Wang, P., Guo, L.L., Wang, T.L., Yang, X.Y., Zhao, R.Z., Zhao, Z.A., Zhang, S., Du, L. and Tao, H.R., 2025. Experimental robustness benchmark of quantum neural network on a superconducting quantum processor. arXiv preprint arXiv:2505.16714.

Thanks!

My excellent collaborators: Mingsheng Ying, Wang Fang, Mingyu Huang, and USTC's quantum hardware physical group

Email: guanji1992@gmail.com