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© Why Quantum Machine Learning?
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Recent Progress

Scientific Advantages = Practical Advantages
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Circuit Noise
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Quantum Machine Learning Algorithm (Variational Circuit)
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Variational quantum algorithm
for MNIST image classification
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Physical Implementation

Nature (2019) Phys. Rev. Applied (2021)
Artificial Data Classification Image Generation

Nat. Commun (2022) Science Bulletin (2023)
Quantum Phase Recognition Structure recognition of
quantum many-body systems
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Quantum (Machine Learning) Classifiers

Figure: Quantum classifier pipeline. The input quantum state p is processed by
a quantum channel &, followed by measurement via a POVM {M_}.cc, to
produce a classical class label ¢ = A(p).

Formally, a quantum classifier over the Hilbert space H is defined as a pair:

A= (5’ {MC}CGC)a

Given an input quantum state p € D(#H), the classifier outputs a label
determined by the most probable measurement outcome:

A(p) := arg maxTr[McE(p)].

where Tr[M.E(p)] is the probability of obtaining outcome ¢ upon
measuring the output state £(p) of £ with the POVM {M,}.cc.
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Visualizing Quantum Classifiers
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Figure: The Computational Model of Quantum Classifiers
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Famous Classical Adversarial Example
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Figure: lan J. Goodfellow, Jonathon Shlens, Christian Szegedy [ICLR 2015]

Adversarial examples (the right picture): inputs to a machine learning
algorithm cause the algorithm to make a mistake.

Safety issue: machine learning algorithms are vulnerable to
intentionally-crafted adversarial examples.
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Robustness Studies

Motivation:

@ Quantum noise at the present of NISQ (Noisy Intermediate-Scale
Quantum) era;

e Quantum classifier is principled by quantum mechanics (hard to be
explained to the end users), so verifying the robustness is essential
(Toward to trustworthy quantum Al).

Challenges:
@ The attacker is quantum noise from the unknown environment.

@ Due to the statistical nature of quantum mechanics, quantum
machine learning models are randomized.
Core Problem:

Verifying Robustness — Identifying Adversarial Examples — Improving
Robustness (e.g. Adversarial Training)
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Specific Attack

Studies
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Adversarial Examples

Definition (Adversarial Example)

Let A be a quantum classifier, p € D(*) an input state, and € > 0 a
perturbation threshold. A quantum state o is called an e-adversarial
example of p if

A(o) # A(p) and Dg(p,0) <e.

If such a state o exists, then ¢ is referred to as an adversarial perturbation
of p. The fidelity distance (also called infidelity) between two quantum
states is defined as

De(p,0) :==1— F(p,0).

Definition (Adversarial Robustness)

A quantum classifier A is said to be e-robust at state p if there exists no
g-adversarial example of p.
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Adversarial e-Robustness

Definition (Robustness Radius)

Let A be a quantum classifier and p a correctly classified input state. The
robustness radius of p, denoted £*(p), is the maximum value ¢ such that
A is e-robust at p:

e*(p):== sup  Df(p,0).
c€D(H)
A(o)=A(p)

Problem (Robustness Verification Problem)

Given a quantum classifier A, an input state p € D(H), and a threshold
e > 0, determine whether
e <e*(p)-

If so, A is e-robust at p,; otherwise, € is an adversarial perturbation, and a
violating state o can be returned as an e-adversarial example.

T = Ty
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Optimal Robustness Bound via Semidefinite Programming

Theorem (Optimal Robustness Bound via SDP, CAV 2021)

Let A= (&,{Mc}cec) be a quantum classifier. The exact robustness
radius is given by
e'(p) = min ec(p),
c#A(p)
where each €%(p) is the solution to the following SDP:

minimize: D (p, o)
subject to: o = 0,
Tr(o) =1,
Tr[(M4(,) — Mc)E(o)] < 0.

If this SDP is infeasible for some c, then £%(p) = oo, indicating that no
adversarial example of p exists which is misclassified as class c.
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Robustness Lower Bound via Measurement Distribution

Theorem (Robustness Lower Bound from Measurement Distribution

CAV 2021)

Let p € D(H) and c* = A(p). Then

cuss) = gin 3 (Vo ~ Vot

is a certified robustness lower bound: for all o such that
De(p,0) < erLp(p), it holds that A(c) = A(p). Here, p2 := Tr[M:E(p)].

o Efficient to Compute. Directly from measurement outcomes
without searching for adversarial perturbations. Fast robustness
certification and dataset-level evaluation of robust accuracy.

@ Model-agnostic: No access to the internal structure of &, this bound
is particularly suited for hardware-level evaluation. In real-device
settings, estimate p£ by repeated execution of £ on quantum hardware

and compute egrp(p) from the empirical outcome distribution. 73



Robustness Upper Bound via Attack Generation

Definition (Empirical Robustness Upper Bound)

Let p € D(H) be an input quantum state. An adversarial attack method
constructs a perturbed state o,q, such that:

A(cadv) # A(p), and  erus(p) := Dr(p, oadv),

where D is the fidelity distance. Then, erup(p) serves as an empirical
robustness upper bound for £*(p).
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Attack Method: FGSM and Mask FGSM

Fast Gradient Sign Method (FGSM):
x' = x+e-sgn(VxL),

where ¢ is the perturbation magnitude, VL is the gradient of the loss L.
Mask FGSM (localized variant)[arXiv:2505.16714]:

5i:{€-sgn(g§_>, m; =1,

Oa mj = 05

with binary mask M = (mq, my,. .., mdim(x))T selecting which input
features are perturbed.

Key point: Achieves efficient and effective adversarial sample generation
in QML, validated experimentally on EMNIST and LCEI tasks.
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Visualizing the Bounds

Certified region erLB

Optimal robustness &*

Adversarial attack region erup
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Sandwich Theorem

Theorem (Sandwich Robustness Bound)

Given a quantum input state p, a certified lower bound er1B(p)
(Theorem 6), and an adversarially generated state o,4,, we have:

erLe(p) < £*(p) < erun(p), (1)

where ERUB(p) = DF(p, Uadv)-

@ crrp(p): a certified lower bound used for formal robustness
guarantees;

@ £*(p): the exact robustness radius, computable via SDP;

@ crus(p): an empirical upper bound derived from adversarial attacks.
Tightness Assessment. The gap A = ecrus(p) — erLp(p) quantifies the
precision of the robustness estimation. The observed gap between the two

bounds is typically less than 3 x 10~3, demonstrating that err.a(p)

provides a tight and practically useful certificate of robustness.
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Robustness Verification Algorithms

Robustness can be aggregated across a dataset to evaluate a classifier’s
overall robustness:

Definition (Robust Accuracy)

Let A be a quantum classifier. The e-robust accuracy of A is the
proportion of correctly classified input states in the dataset that are also
g-robust.

Robustness Verification Algorithms:
@ State Robustness Verification: SDP.
o Under-approximate Robustness Verification: robustness lower bound.

@ Exact Classifier Robustness Verification: robustness lower bound and
SDP.

23/35



Robustness Verification Algorithms: N = 2" for n qubits

Robustness Verification Algorithms

Robustness Lower

Robustness Optimal

Mixed Strategy

Bound Bound
Method Matrix Semidefinite MM & SDP
Multiplication (MM) | Programming (SDP)
Complexity o(Tl-Ic[- N°) O(T[-Ie[- N>%) | O(IT'|-[c]- N°°)
Robust Accuracy | Under-approximate Exact Exact

Table: Summary of robustness verification algorithms based on different bounds.

@ T: the set of training data;
@ T': asubset of T obtained by robust bound;

@ C: the set of measurement outcomes:;

@ N: the dimension of state space H.

In practice: |T'| < | T| =Robustness lower bound is tight.

24/35



IIiiiIIE!IIIH!%!lIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

@ VeriQR: A Tool for Robustness Verification
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System Architecture of VERIQR.

VERIQR is available at https://github.com/Veri-Q/VeriQR.
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https://github.com/Veri-Q/VeriQR

Functions

e probablty i pe
® Parser: parses the input quantum Ejﬁ@ —Llocal ——— ! l
classification model to obtain the Wil 1 R o ol e || Sy
corresponding quantum circuit object ) ——— | —
i
® Noise Generator: adds random noise to T o senerer -
the quantum circuit (to simulate the noise B
effect of a real device) and enables the R T coreverter §
user to add custom noise to generates a e R E
noisy quantum model
Statistics and Visualization Statistics
® Constraint Generator: generates — | IS
nonlinear constraints based on a noisy A g g i g o
quantum model and dataset cmoE ﬂ - ot

® Core Verifier: takes constraints, a perturbation parameter ¢, and quantum state types as
input and uses approximate and exact algorithms to initiate the verification analysis process
for e-robustness

® Statistics and Visualization: displays and visualizes output in VeriQR’s GUI component,
including robust accuracy, adversarial examples and quantum circuits
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File Help
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Experimental Schematic for QNN Evaluation

a b

Leg. (p)

Adv. (@)

Classical image dataset

@ a, The superconducting quantum processor, comprising 72 qubits and
20 qubits selected for the experiment are highlighted in green.

@ b, Architecture of the quantum neural network (QNN) classifier.

@ ¢, Sample visualization of handwritten letters “"Q"” and “T" from the
EMNIST dataset, used for the classical image classification task.

o d, Quantum circuit used to generate the Linear Cluster State
Excitation Identification (LCEI) dataset. States are labeled as
“excited” or “non-excited” based on the rotation angle a.
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Robustness Bound Verification Experiments

a b
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o Tightness of Robustness Bounds: validate the near-optimality of
the Mask FGSM attack strategy and the tightness of the lower bound.

o Improvement through Adversarial Training: adversarial training

significantly increased the mean certified robustness lower bound by a
factor of 4.22 in EMNIST and 4.74 in LCEL
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Summary of quantum adversarial robustness verification:
@ Theory: Robustness bounds and verification algorithms CAV 2021
@ Tool: Robustness verification tool VERIQR FM 2024
@ Physical Validation: Experimental robustness benchmark on
superconducting hardware arXiv:2505.16714

Review Book Chapter
Verifying Adversarial Robustness in Quan-

tum Machine Learning: From Theory to Quantum

Physical Validation via a Software Tool i’f,°‘;‘ii§?§§f
Quantum Robustness in Artificial Intelli- s oeree
gence (Springer, online soon) g

Other Trustworthy Quantum Algorithm Works:
e Fairness: Individual fairness (global robustness) verification of
quantum algorithms CAV 2022
@ Privacy: Differential privacy for quantum algorithms: formal
verification and optimal mechanisms ACM CCS 2023 and 2025
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Thanks!

My excellent collaborators: Mingsheng Ying, Wang Fang, Mingyu Huang, and
USTC's quantum hardware physical group

Email: guanjil992@gmail.com
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