
Aws Albarghouthi | University of Wisconsin–Madison

Synthesizing quantum compilers

The protagonists

Amanda Xu Abtin Molavi

2

Why quantum computing?

3

Why quantum computing?

factoring integers efficiently using Shor’s algorithm

3

Why quantum computing?

factoring integers efficiently using Shor’s algorithm

simulating quantum mechanics, e.g., for material discovery

3

Why quantum computing?

factoring integers efficiently using Shor’s algorithm

simulating quantum mechanics, e.g., for material discovery

“discover that quantum mechanics was wrong” — Michael Nielsen*

* https://conversationswithtyler.com/episodes/michael-nielsen/ 3

Bits vs qubits

4

0

1

Bits vs qubits

4

0

1

Bits vs qubits

5

|0⟩

|1⟩

Bits vs qubits

5

|0⟩

|1⟩

Bits vs qubits

5

|0⟩

|1⟩

x y

Bits vs qubits

5

|0⟩

|1⟩

x y

Binary vs quantum operations

* Amy, QPL 2018

Classical X gate

 0 → 1
1 → 0

6

Binary vs quantum operations

* Amy, QPL 2018

Classical X gate

 0 → 1
1 → 0

Quantum X gate

 |0⟩ → |1⟩
|1⟩ → |0⟩

6

Binary vs quantum operations

* Amy, QPL 2018

Classical X gate

 0 → 1
1 → 0

Quantum X gate

 |0⟩ → |1⟩
|1⟩ → |0⟩

Pathsum notation*

X : |x⟩ → |¬x⟩

6

Binary vs quantum operations

7

Binary vs quantum operations

Pathsum notation

H : |x⟩ → ∑
y

1

2
eixy |y⟩

7

Binary vs quantum operations

Pathsum notation

H : |x⟩ → ∑
y

1

2
eixy |y⟩

Rz(θ) : |x⟩ → ei(2x−1)θ |x⟩

7

Binary vs quantum operations

Pathsum notation

H : |x⟩ → ∑
y

1

2
eixy |y⟩

Rz(θ) : |x⟩ → ei(2x−1)θ |x⟩

CX : |xy⟩ → |x(x ⊕ y)⟩

7

Quantum circuits/programs

8

Quantum circuits/programs

time

8

Quantum circuits/programs

time

Rz(π) q1;
H q2;
CX q1, q2;

8

The quantum landscape

9

The quantum landscape

qubits are unreliable, noisy

9

The quantum landscape

qubits are unreliable, noisy

NISQ what can we do with noisy qubits?

9

The quantum landscape

qubits are unreliable, noisy

NISQ what can we do with noisy qubits?

FTQC can we do error correction?

9

The quantum landscape

qubits are unreliable, noisy

NISQ what can we do with noisy qubits?

FTQC can we do error correction?

Google Quantum AI et al., Nature 2024

9

The quantum landscape

qubits are unreliable, noisy

NISQ what can we do with noisy qubits?

FTQC can we do error correction?

Google Quantum AI et al., Nature 2024

9

AWS et al., Nature 2025

Anatomy of a quantum compiler

circuit optimizer

quantum processor

mapper and router

…

10

Anatomy of a quantum compiler

circuit optimizer

quantum processor

mapper and router

… Ion Trap

10

Anatomy of a quantum compiler

circuit optimizer

quantum processor

mapper and router

… Ion TrapSuperconducting

10

Anatomy of a quantum compiler

circuit optimizer

quantum processor

mapper and router

… Ion Trap

Photonic

Superconducting

10

Anatomy of a quantum compiler

circuit optimizer

quantum processor

mapper and router

…

Neutral Atom

Ion Trap

Photonic

Superconducting

10

Anatomy of a quantum compiler

circuit optimizer

quantum processor

mapper and router

…

11

Anatomy of a quantum compiler

circuit optimizer

quantum processor

mapper and router

…

11

We need to synthesize quantum compilers

huge diversity in qubits, architectures, fault-tolerance schemes

(quantum) compilers are hard to get right*

* Paltenghi & Pradel, OOPSLA 2022 12

Synthesizing quantum compilers

circuit optimizer

quantum processor

mapper and router

…
13

Synthesizing quantum compilers

circuit optimizer

quantum processor

mapper and router

…
13

this talk

Synthesizing circuit optimizers

* not everything will be verified

optimizer
synthesizer

quantum gate
semantics

verified*
optimizer

14

Synthesizing circuit optimizers

optimizer
synthesizer

quantum gate
semantics

verified*
optimizer

15

Synthesizing circuit optimizers

A learning rewrite rules

B optimizing, fast and slow

16

Synthesizing circuit optimizers

A learning rewrite rules

B optimizing, fast and slow

theme simple, classic algorithms go a long way

16

What is a rewrite rule?

17

What is a rewrite rule?

17

What is a rewrite rule?

17

What is a rewrite rule?

17

What is a rewrite rule?
Symbolic rewrite rules

17

What is a rewrite rule?
Symbolic rewrite rules

17

What is a rewrite rule?
Symbolic rewrite rules

17

Challenges in learning rewrite rules

18

Challenges in learning rewrite rules

how can we search the vast space of (symbolic) rewrite rules?

18

Challenges in learning rewrite rules

how can we search the vast space of (symbolic) rewrite rules?

how do we schedule rewrite rules?

18

Naive synthesis of rewrite rules

19

Naive synthesis of rewrite rules

rules = []

19

Naive synthesis of rewrite rules

rules = []

circuits = enumerate(max_qubits, max_size)

19

Naive synthesis of rewrite rules

rules = []

circuits = enumerate(max_qubits, max_size)

for (c1,c2) in circuits x circuits:

19

Naive synthesis of rewrite rules

rules = []

circuits = enumerate(max_qubits, max_size)

for (c1,c2) in circuits x circuits:
even for small circuit sizes, we’re
talking about to rules1011 1018

19

Naive synthesis of rewrite rules

rules = []

circuits = enumerate(max_qubits, max_size)

for (c1,c2) in circuits x circuits:

if verify_equivalence(c1,c2):
even for small circuit sizes, we’re
talking about to rules1011 1018

19

Naive synthesis of rewrite rules

rules = []

circuits = enumerate(max_qubits, max_size)

for (c1,c2) in circuits x circuits:

if verify_equivalence(c1,c2):

rules.append(c1 ->- c2)

even for small circuit sizes, we’re
talking about to rules1011 1018

19

Key insights for rewrite synthesis

20

Key insights for rewrite synthesis

symbolic circuits are polynomials over the complex field

20

Key insights for rewrite synthesis

symbolic circuits are polynomials over the complex field

polynomial identity testing is easy — Schwartz–Zippel lemma

20

Key insights for rewrite synthesis

symbolic circuits are polynomials over the complex field

polynomial identity testing is easy — Schwartz–Zippel lemma

a simple, new data structure called a polynomial identity filter (PIF)

20

Circuit equivalence

C1

C2

circuits

21

Circuit equivalence

C1

C2

circuits

P1

P2

polynomials

21

Circuit equivalence

C1

C2

circuits

P1

P2

polynomials

21

Circuit equivalence

C1

C2

circuits

P1

P2

polynomials

1 randomly sample some values

2 return

a

P1(a) = P2(a)

21

Circuit equivalence

C1

C2

circuits

P1

P2

polynomials

1 randomly sample some values

2 return

a

P1(a) = P2(a)

if then algorithm returns True

if then the algorithm returns

True with probability

C1 = C2

C1 ≠ C2
d

|R |

lemma

21

Circuit equivalence

C1

C2

circuits

P1

P2

polynomials

1 randomly sample some values

2 return

a

P1(a) = P2(a)

if then algorithm returns True

if then the algorithm returns

True with probability

C1 = C2

C1 ≠ C2
d

|R |

lemma

21

Polynomial identity filter (PIF)

C1

C2

circuits

C3

Cn

22

…

Polynomial identity filter (PIF)

C1

C2

circuits

C3

Cn

C1
C2

C3
C9 C4

equivalence classes of circuits

…
…

22

…

Polynomial identity filter (PIF)

C1

C2

circuits

C3

Cn

P1

P2

polynomials

P3

Pn

…
C1

C2

C3
C9 C4

equivalence classes of circuits

…
…

22

…

Polynomial identity filter (PIF)

C1

C2

circuits

C3

Cn

P1

P2

polynomials

P3

Pn

… …

P1(a)

P2(a)

P3(a)

Pn(a)

complex #s

C1
C2

C3
C9 C4

equivalence classes of circuits

…
…

22

…

Polynomial identity filter (PIF)

C1

C2

circuits

C3

Cn

P1

P2

polynomials

P3

Pn

… …

P1(a)

P2(a)

P3(a)

Pn(a)

complex #s

probability of a wrong rewrite rule at most
n2d
|R |

theorem

C1
C2

C3
C9 C4

equivalence classes of circuits

…
…

22

…

Symbolic circuits as polynomials

23

H q;
Rz(θ) q;

Symbolic circuits as polynomials

23

H q;
Rz(θ) q;

(v0,0 ⋅
1

2
⋅ e−iθ) + (v0,1 ⋅

1

2
⋅ eiθ) + (v1,0 ⋅

1

2
⋅ e−iθ) − (v1,1 ⋅

1

2
⋅ eiθ)

Symbolic circuits as polynomials

23

H q;
Rz(θ) q;

amplitude

(v0,0 ⋅
1

2
⋅ e−iθ) + (v0,1 ⋅

1

2
⋅ eiθ) + (v1,0 ⋅

1

2
⋅ e−iθ) − (v1,1 ⋅

1

2
⋅ eiθ)

Symbolic circuits as polynomials

23

H q;
Rz(θ) q;

amplitude varℂ

(v0,0 ⋅
1

2
⋅ e−iθ) + (v0,1 ⋅

1

2
⋅ eiθ) + (v1,0 ⋅

1

2
⋅ e−iθ) − (v1,1 ⋅

1

2
⋅ eiθ)

Symbolic circuits as polynomials

23

H q;
Rz(θ) q;

amplitude varℂ

(v0,0 ⋅
1

2
⋅ e−iθ) + (v0,1 ⋅

1

2
⋅ eiθ) + (v1,0 ⋅

1

2
⋅ e−iθ) − (v1,1 ⋅

1

2
⋅ eiθ)

Symbolic circuits as polynomials

23

H q;
Rz(θ) q;

amplitude varℂ

(v0,0 ⋅
1

2
⋅ e−iθ) + (v0,1 ⋅

1

2
⋅ eiθ) + (v1,0 ⋅

1

2
⋅ e−iθ) − (v1,1 ⋅

1

2
⋅ eiθ)

Symbolic circuits as polynomials

23

H q;
Rz(θ) q;

rewrite

…

constrain variables to
unit circle

eiθ → z

ei2θ → z2

constrained polynomials

amplitude varℂ

(v0,0 ⋅
1

2
⋅ e−iθ) + (v0,1 ⋅

1

2
⋅ eiθ) + (v1,0 ⋅

1

2
⋅ e−iθ) − (v1,1 ⋅

1

2
⋅ eiθ)

Symbolic circuits as polynomials

24

H q;
Rz(θ) q;
symb q;

Symbolic circuits as polynomials

24

H q;
Rz(θ) q;
symb q; |x⟩ → ϕ |x⟩

symb semantics

Symbolic circuits as polynomials

24

H q;
Rz(θ) q;
symb q; |x⟩ → ϕ |x⟩

symb semantics

Symbolic circuits as polynomials

24

H q;
Rz(θ) q;
symb q; |x⟩ → ϕ |x⟩

symb semantics

ϕ ⋅[]

Symbolic circuits as polynomials

24

H q;
Rz(θ) q;
symb q; |x⟩ → ϕ |x⟩

symb semantics

ϕ ⋅[]

|x⟩ → ϕ(x, y) | f(x, y)⟩

general symb semantics

The power of symbolic circuits

synthesize symbolic rules with long-range interaction

empirically very important set of rules

25

The power of symbolic circuits

synthesize symbolic rules with long-range interaction

empirically very important set of rules

25

Ordering rewrite rules

26

Ordering rewrite rules

26

Ordering rewrite rules

26

Ordering rewrite rules

26

coarse fixed passes

Optimizing, fast and slow

27

Optimizing, fast and slow

simulated annealing

27

Optimizing, fast and slow

simulated annealing

• pick one of the rules

27

Optimizing, fast and slow

simulated annealing

• pick one of the rules

• apply it to a subcircuit

27

Optimizing, fast and slow

simulated annealing

• pick one of the rules

• apply it to a subcircuit

• if the circuit is smaller, accept, otherwise reject with high probability

27

Optimizing, fast and slow

simulated annealing

• pick one of the rules

• apply it to a subcircuit

• if the circuit is smaller, accept, otherwise reject with high probability

dynamically generate new rule 1.5% of the time

27

Optimizing, fast and slow

simulated annealing

• pick one of the rules

• apply it to a subcircuit

• if the circuit is smaller, accept, otherwise reject with high probability

dynamically generate new rule 1.5% of the time

• use “resynthesis” tools—see our ASPLOS 2025 paper

27

Evaluation: Comparisons

* Li et al., OOPSLA 2024 28

synthesis time: 1.2 min vs 10.4 min (Quartz)

A closer look at reduction

29

� ��� 	���
��� �
��

-$'!��,�

����

����

��	�

��	�

��
�

��
�

�
/
!
+
�
"
!
�

*
�+
!

.
�
-
$)
(

����������"�-!�,!-

�!-#)

����

�$,%$-

����

����$-

�����

�.�+-0

�.�+&

A closer look at reduction

29

� ��� 	���
��� �
��

-$'!��,�

����

����

��	�

��	�

��
�

��
�

�
/
!
+
�
"
!
�

*
�+
!

.
�
-
$)
(

����������"�-!�,!-

�!-#)

����

�$,%$-

����

����$-

�����

�.�+-0

�.�+&

Evaluation: FTQC

30

Synthesizing quantum compilers

circuit optimizer

quantum processor

mapper and router

…
31

Synthesizing quantum compilers

circuit optimizer

quantum processor

mapper and router

…
31

sneak peak

Xu et al., PLDI 2023 Xu et al., ASPLOS 2025

circuit optimizer

quantum processor

mapper and router

…

32

circuit optimizer

quantum processor

mapper and router

…

Molavi et al., MICRO 2022 Molavi et al., OOPSLA 2025

33

pip install wisq

https:///qqq-wisc.github.io/

34

