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Why quantum computing?

factoring integers efficiently using Shor’s algorithm

simulating quantum mechanics, e.g., for material discovery

“discover that quantum mechanics was wrong” — Michael Nielsen*

* https://conversationswithtyler.com/episodes/michael-nielsen/ 3
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Quantum X gate 

 |0⟩ → |1⟩
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Pathsum notation* 

X : |x⟩ → |¬x⟩
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Binary vs quantum operations

Pathsum notation

H : |x⟩ → ∑
y

1

2
eixy |y⟩

Rz(θ) : |x⟩ → ei(2x−1)θ |x⟩

CX : |xy⟩ → |x(x ⊕ y)⟩
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Quantum circuits/programs

time

Rz(π) q1; 
H     q2; 
CX    q1, q2;
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NISQ what can we do with noisy qubits?

FTQC can we do error correction? 

Google Quantum AI et al., Nature 2024 
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We need to synthesize quantum compilers

huge diversity in qubits, architectures, fault-tolerance schemes 

(quantum) compilers are hard to get right*

* Paltenghi & Pradel, OOPSLA 2022 12
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verified*  
optimizer
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Synthesizing circuit optimizers

A learning rewrite rules

B optimizing, fast and slow

theme simple, classic algorithms go a long way
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Challenges in learning rewrite rules

how can we search the vast space of (symbolic) rewrite rules?

how do we schedule rewrite rules?
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Naive synthesis of rewrite rules

rules = []

circuits = enumerate(max_qubits, max_size)

for (c1,c2) in circuits x circuits:

if verify_equivalence(c1,c2):

rules.append(c1 ->- c2) 

even for small circuit sizes, we’re 
talking about  to  rules1011 1018
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Key insights for rewrite synthesis

symbolic circuits are polynomials over the complex field

polynomial identity testing is easy — Schwartz–Zippel lemma

a simple, new data structure called a polynomial identity filter (PIF)
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Polynomial identity filter (PIF)

C1

C2

circuits

C3

Cn

P1

P2

polynomials

P3

Pn

… …

P1(a)

P2(a)

P3(a)

Pn(a)

complex #s

probability of a wrong rewrite rule at most 
n2d
|R |

theorem

C1
C2

C3
C9 C4

equivalence classes of circuits

…
…
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H     q; 
Rz(θ) q;

rewrite 

 

 

… 

constrain variables to 
unit circle 

eiθ → z

ei2θ → z2

constrained polynomials
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Symbolic circuits as polynomials

24

H     q; 
Rz(θ) q; 
symb  q; |x⟩ → ϕ |x⟩

symb semantics

ϕ ⋅[ ]

|x⟩ → ϕ(x, y) | f(x, y)⟩

general symb semantics
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coarse fixed passes
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Optimizing, fast and slow

simulated annealing

• pick one of the rules

• apply it to a subcircuit

• if the circuit is smaller, accept, otherwise reject with high probability

dynamically generate new rule 1.5% of the time

• use “resynthesis” tools—see our ASPLOS 2025 paper
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Evaluation: Comparisons

* Li et al., OOPSLA 2024 28

synthesis time: 1.2 min vs 10.4 min (Quartz)
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Evaluation: FTQC
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Xu et al., PLDI 2023 Xu et al., ASPLOS 2025
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circuit optimizer

quantum processor

mapper and router

…

Molavi et al., MICRO 2022 Molavi et al., OOPSLA 2025
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pip install wisq 

https:///qqq-wisc.github.io/
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