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factoring integers efficiently using Shor’s algorithm
simulating quantum mechanics, e.qg., for material discovery

“discover that quantum mechanics was wrong” — Michael Nielsen®

* https://conversationswithtyler.com/episodes/michael-nielsen/
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Rz(m) q1;
H q2;
CX gql, qg2;
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huge diversity in qubits, architectures, fault-tolerance schemes

(quantum) compilers are hard to get right*

* Paltenghi & Pradel, OOPSLA 2022
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Synthesizing circuit optimizers

A learning rewrite rules

B optimizing, fast and slow

theme simple, classic algorithms go a long way
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What is a rewrite rule?

Symbolic rewrite rules
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Challenges in learning rewrite rules

how can we search the vast space of (symbolic) rewrite rules?

how do we schedule rewrite rules?
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Naive synthesis of rewrite rules

rules = |[]

circuits = enumerate(max_qubits, max_size)

for (cl,c2) in circuits x circults: - |
even for small circuit sizes, we’re

. 11 18
if verify equivalence(cl,c2): talking about 107" to 10 rules

rules.append(cl — c2)
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Key insights for rewrite synthesis

symbolic circuits are polynomials over the complex field
polynomial identity testing is easy — Schwartz-Zippel lemma

a simple, new data structure called a polynomial identity filter (PIF)
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it C; = C, then algorithm returns True

it C; # C, then the algorithm returns

True with probability
| R



Circuit equivalence

circuits polynomials
ﬁ
Ci £ \
1T randomly sample some values a
/ 2 return Pi(a) = P,(a) Probability and Computing
Landomized Algorithms and Probabilistic Analysis
ﬁ '\
C2 P 2
: Michael Mitzenmacher
Y Eli Upfal

lemma

if C; = C, then algorithm returns True

it C; # C, then the algorithm returns

True with probability
|R|
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Polynomial identity filter (PIF)

circuits polynomials

C2_> P2

& > P

equivalence classes of circuits
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Polynomial identity filter (PIF)

circuits polynomials complex #s equivalence classes of circuits

¢, —» p, ——>» P (a)
¢, —» P, ——» P,(a)
c, ————» P, ———>» P,(a)

c, —————» p ——> P (a)
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Polynomial identity filter (PIF)

circuits polynomials complex #s

¢, —» p, ——>» P (a)
¢, —» P, ——» P,(a)
c, ————» P, ———>» P,(a)

c, —————» p ——> P (a)

equivalence classes of circuits

theorem

probability of a wrong rewrite rule at most

R
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Symbolic circuits as polynomials

H q;
Rz(0) q;

l

C var  amplitude
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constrained polynomials

Symbolic circuits as polynomials

rewrite
el? 7
020 _, 72
H q;
Rz(0) q;
constrain variables to
l unit circle

C var  amplitude

I —i0 I 10 I —1i0 I 10
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Symbolic circuits as polynomials
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H dJd; symb semantics
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H dJd; symb semantics
Rz(8) q;
symb q; [ x) = @ x)
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Symbolic circuits as polynomials

H dJd; symb semantics
Rz(8) q;
symb q; [ x) = @ x)
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Symbolic circuits as polynomials

H dJ; symb semantics general symb semantics
Rz(6) q;
symb  q; [x) = ¢ ]x) | x) = ¢(x, )| fx, )

1 1 L
¢°[(’U0,0' —2 N 19)+ (’U(),l' $'619)+(’01,0' E i 10)4—(’01,1'
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qiskit / qiskit / transpiler [ preset_passmanagers / level3.py

Code Blame @ 119 lines (104 loc) : 4.8 KB - (1) &8 /4

e T

26
v def level 3 _pass_manager(pass_manager_config: PassManagerConfig) -> StagedPassManager:

28 "l evel 3 pass manager: heavy optimization by noise adaptive qubit mapping and

PAS gate cancellation using commutativity rules and unitary synthesis.

30

31 This pass manager applies the user—-given initial layout. If none is given, a search
32 for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
33 IfT no such layout is found, and device calibration information is available, the

34 circuit is mapped to the qubits with best readouts and to CX gates with highest fidelit
35

36 The pass manager then transforms the circuit to match the coupling constraints.

37 It is then unrolled to the basis, and any flipped cx directions are fixed.

38 Finally, optimizations in the form of commutative gate cancellation, resynthesis

39 of two—qubit unitary blocks, and redundant reset removal are performed.
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Ordering rewrite rules

qiskit / qgiskit / transpiler [ preset_passmanagers [ level3.py

Code Blame @ 119 lines (104 loc) : 4.8 KB - (1) &8 /4

e T

26
v def level 3 pass_manager(pass_manager_config: PassManagerConfig) —> StagedPassManager:

28 "l evel 3 pass manager: heavy optimization by noise adaptive qubit mapping and

AL gate cancellation using commutativity rules and unitary synthesis.

30

31 This pass manager applies the user—-given initial layout. If none is given, a search
32 for a perfect layout (i.e. one that satisfies all 2-qubit interactions) is conducted.
33 If no such layout is found, and device calibration information is available, the

34 circuit is mapped to the qubits with best readouts and to CX gates with highest fidelit
35

36 The pass manager then trans coupling constraints.

37 It is then unrolled to the ~tions are fixed.

38 Finally, optimizations in the form of commutative gate cancellation, resynthesis

39 of two—qubit unitary blocks, and redundant reset removal are performed.
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Optimizing, fast and slow

simulated annealing

* pick one of the rules

* apply it to a subcircuit

* if the circuit is smaller, accept, otherwise reject with high probability
dynamically generate new rule 1.5% of the time

* use “resynthesis” tools—see our ASPLOS 2025 paper



Evaluation: Comparisons

synthesis time: 1.2 min vs 10.4 min (Quartz)

GUOQ vs. State-of-the-Art Quantum Optimizers

GUOQ
GUOQ
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0
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* Li et al., OOPSLA 2024
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A closer look at reduction

average 2q reduction
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Evaluation: FTQC
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Synthesizing Quantum-Circuit Optimizers

AMANDA XU, University of Wisconsn-Madisan, USA

ABTIN MOLAVI, Univarsity of Wisconsin-Madison, USA
LAUREN PICK, University of Wisconsin-Madison, LSA
SWAMIT TANNU, University of Wisconsia-Madisoax USA

AWS ALBARGHOUTHI, University of Wisconsin-Madison, USA

Near-lenn quantus: computers are expected (o wonk i an environment where cech cperation is noisy, witl:
no crror correction, Thacrcfors, quantum circuit optimizers arce applicd to minimize the number of noisy
operaticns. lodey, physicists are cansfently experimenting with novel devices and architectures. For every
new physical substrate and for every modification of a quantum computer, we need 10 modifyy or rewrite major
pirces of the nptimizer to ron 5 wyessinl experiments In this pAper, we present QUEso, an eff ciert appmnd'
for automatically synthes aing a quantom=cirowt otinizer for a given cuatum device. For instance, in 1.2
minutes, cuzso can synthesize an optmizer with kigh-prcbability comrectness guaraatees for mm computers
that significantly outperforms leading compilers, suck as rat's Qiskit and TXET, on the ma ority (85%) of the
cults in 4 diversa benchmark suite.

A rumber of thecretical and alponthmic meaghts underie Quesc: (1) An algebraic approach for represening
rewrite rules nd their semantics. This facilitates maseming zbont comrpley symbiolic rewrite rmles that are
heyind the scope of exnding technigues. (2) A fsd aopruach for prebabilistizel’y verilying eguivelence
of quantum circuits by reducing the problem to a speciel form of palymemia! identity testing. (3) A nove.
probabilistic data structure, col.cd o palynormia! identity filicr [Pir), for ciheiently svathesizing rewrite rlcs,
(4) A beam scarck bascc algorithm tha: cfficiently applics the syntacsized symbolic rewrite malcs to optimize
quantum circuis.

CUS Concegts - Software and its engineering — Compilers; - Hardware — Quantum computation.
Additicnal Key Words anc Phrescs: quantum comrputing, probakbilistic venification
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1 INTRODUCTION

The dreem of quantum computing has been around for decaces, out it is only recently that we have
begun te witness promising physical realizations of quantum computers, Quantum computers enable
efficient simulation of quantum mechanical phenomena, potentially opening the door to advances
in quantum physics, chemistry, material design, and beyond. Near-term quantuw: computers with
several dozens of qubits are expected to operate in a noisy environment withcut sror cormection, in
a model of computation called Noisy Intsrmydiatz Sca'e Quantum (v0sQ) computing [Preskill 20158].

Aathory” address=c: Amanda Xu University of Wiscoosin-Maxlison, Madison, W, USA, axudd@wiscedn Abtin Molari
University of Wiscansin-Madison, Maedison W, USA, amolovi@wise.cda; Lauren Pick, University cf Wisconsin-Madison,
Madicon, WI 1254 Ipck2@wies pdix Swarit Tanan University of Wissansin-Madisn, Mzcionm WLESA stanmi@wio evix
Aws Mbargkouthi, Uriversity of Wisconsin Madion, Madisor, WI USA, awa@ewisscdu

Ths aark is Beersed ancder a Creative Comrmmins A tribution 4.0 Internations. Licerse.
© 2023 Copyright ha'c by the ammer/anthor(s)

2475-1421/2025/5-ANT14C

M!_u /Tdoy nrg'll) 114573591254

L —

Xu et al., PLDI 2023

140

Optimizing Quantum Circuits, Fast and Slow

Amanda Xun
Univeraty of Wiscansin Medison
Madisor;, WI US4
axudd@uase #du

Swamit Tannu
University of Wiscansin-Madlison
Madiyor:, WI USA
swam tgdcs wisc.edua

Ahstract
Optimizing quanturm cireudts I3 critical: the number of quan-

am operylions needs lo be menimized for a speessTl oval -
uaton of a cirruit on a quantum preccssor. In this paper we
unify two disparate idecs for optimizing quantum circults,
rewrite rules, winch are fus standard oplanizer passes, and
unitary synthesis, which is slow, requiring a search throagh
the space of circuits, We precent a clean, unifying fremework
Jor thunking of rew riting wnd sevyntliesis as abslruct corcust
rransformations. We then present a radically simale alpo-
rithm, GUOQ, for optimizing quantum circuits that exploits
the synergies of rewriting and resyrthesis. Our extensive
evaluatior demonatrates the ability af arog ta strongly out-
perform existing optimizers on a wide rarge of benchmorks.

1 Introduclion

Quantum computing enahles effcient simulation of quan-
vam mechanical shenomena, promising to catalyze advances
in quantum physics, chemistry, materials scence. and be-
youd. Near-term quantum cotputers with meore thar a thoa-
sand qubits opercting 1 a noisy envirorment without error
correction have already bren deploved, marking the cur-
rent exa of Noisy Intermediate Scale Cuantum (N152) com-
puting [48]. Recent groundbreaxmg expernments have im-
clemented error-correcied logica! qubits and demonstrated
potential far reducmg logice! errar [7, 12]. Althongh many
challerges remain, fault tolerant quanium computing (FTQC)
is on the horizon.

In bath m1zg and ¥roc, redicing errars isa eritieal ohstarke
w0 overeome. Every quantum operation has a probability of
failure causing a quantum execution to quickly devolve into
rancom noise. The N1sg pardipm aims Lo miligele Ces
crrors 11 the absenoce of error carrecticn primarily by reduc
gy the number of vperations, However errur carrection in
FTQC s not a penacea and infroduces its oar nnique botte-
necks [, 58], which can reader the error correction scheme
useless f Jert untamed. Especially in the near term, rroc
architectures may face challenges in hancling large circuct
depths duc to physical imzerfeetions sueh a3 two-devel sys-
vam (TLS) drift, qublt leakage, high-energy perticle strikes,

Abtin Malav
Uraversity of Wiscona:in Mad:san
Madlsen, W1, USA

armolavi@@wi s rdu

Aws Albarghouth:

Urlvarsity of Wisconsin-Madisan
Maudison, W1, USA
aws(@cs.wisc.edu

GUDO vs, Hiate-of-the-Art Quantum Cptimize=s
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Figure 1. Snmmary of Goog ecompared to stase-af-the-art
on 2 qub:t gate reduction for the toxQzo zate sot. GUoQ anc
BOQSKIt are allowed to appros:imate the clrouitup to € = 1075,
“Quiarl rexpuires ae NVIDTA A 100 (40GB) GPT 1o mun.

and crosstelk [1, 7 38). Therelore, it is of utmost importance
to reduce the number of oparations for rroc as well,

Current approsches tackling quantum circuit optimiza-
tan primarily anply peephole oprimization using a fixed
set of rewrite rules. Some tools use a small set of hand-
crafted rules [20, 29, <0], while others automasically syn-
thesize rules |66, 67]. The dea is to apply cewrite rules in
a schedule, transforming subcircuts to semantically equiv-
alent ones with: fewer operat:ons, Rewrite rules are fast to
apply—matrch a pattern and rewrite it—hut inherently enly
perform local optimizaticons.

An orthogonal line of wark hzs been studying the problam
af unitary s:mthesic A unitary malbrix precisely represents the
scmantics of a quantum progrem. Some quantum a gorithms
are simple tc state in the form of a unizary but nontrivia!
i deenmpose into dementary operations that cen be ex-
scuted or herdware [15, 18], [hus, & large body of work
has focused on synthesizing guantum cirouiis thal imple-
ment a given unitary matrix |4, 17, 26, 4%, 50, 51, 59 62, 68
Recent works [44, 65] have applicd thesc elgonthms to op-
timize quantyum circuits by partitioning large cireuits into
manageably-sized subcircui's consisting of a few qubits at
moat anc then resynthesizing cach subaircuit to praduee &
new subcircult whose unitary 15 equivalent, or close enough,

Xu et al., ASPLOS 2025
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Qubit Mapping and Routing via MaxSAT

Abtin Molav:. Amanda Xu, Marnin Diges, Lauren Pick, Swamit Tannu, Aws Albarghout™i
University of Wiseonsin-Mazisen, Madison, W1, LSA
Jamolavi, axodd, mdiges, Ipick?, stanma, alberghouthi] @ aase odu

Absrrecr—Near-term quamtum computers will operate In a
noksy caviromment, without erver correction, A critical problem
for nearderm quantom computing is laying oot a logical circnit
onte & physical device with limitad connectivity between gubits,
‘This is known as the quis mapping aud rowting (QME) problem,
un intractable combinatorial problem. I is fmportant (0 solve
OMA 08 optimally s possible o reduce the amount of added
nokse, which may render a quantum computation usdess, In
this puper; we prsval 3 vovel approach for optissally solviog
the QMR problem via a redoction to wtariorwo
(MAaxsaTh Additionally, we present two nevel relavation ideas
that shrink the slze of the vAxsAr constralnts by explolting
the structure of 0 quoamtum cireuit. Our thoreugh cmpirical
evialuation demwnstrates (1) the scalahility of owr approach
compared o state-of-the-art optimal QMR eehniques (solves mare
than Jx benchmarks with iz speedup), (2) the significant cost
reduction compured lo stute.aftheart heurbtic appronaches (an
average of ~5x pwap reduction), and (3) the power of our proposed
constraint redaxations,

Index Terms—aquantum computing, qublt mapping

1. INTRODUCTION

Quantum caompaters enable ethoent simelabion of quantim
mechanical phenomena, and thereiose opea up the door to
advances i quactuan physics, chemistiy, ezl desigo, opti-
mization, machine eaming, and beyond. Unfoctunately. near-
term quantum computers face significant reliability challerges
as quantem hardware s highly eror-prone: quantum  bits
(qubily ) used lur computalion we seasitive (o environmenial
nuise, Furthermors, inplementing quantum error correction [1]
o detect wmd currect hurdwige errons requires Lthowands of
physical yubits, and therefors is unlibkely w become vible
soon, In the mewntime, per-lenn quantum compelers with
several dozens of qubhis are expecied 1o operate in a nolsy
environment without any error correcton using a model of
compuatation called neiry inrsrmediare-scale guanim (NISQ)
computing [2]

A critical problem in NISQ computing is laying out a logical
cirouit onte a physical device with limited connectivity betwesn
qubits. This is known as the quoi mapping and routing (OMR)
prozlem. Specifically, we can cnly apply two-qubit gotes on
physically adjocent quiits. sn we nead I move (mute) quaits 1o
ptyswcally adpeent locztbons. Qubil =utmp 15 8 sy process
that can e dztrimental to suceesshul execution. Thus, cur gnal
i o lay out the circuit in such a way that minimizes the
required routing.

Salving QMR optimally is known to be N2-hard 3] Thns,
a majority of the proposesd technicnes have “een hearistic im
natare. preducimg sutoptirmal results [4] A small umber of
techriques have brer propased for solving QMR optimally,
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Fig. 1: Comparison agninst comstraint-based tools

maosily by reducing the problem to optimizing an objectve
function subject o constraints, ¢.g., inicger lincar progranming
or satisfability modu's theories [S) [6], [7]. Whik such
constrain!-based cpproaches produce optimal results with
minimum noise, they have not bezn sezlable w larger crcuits,
In this paper, we propese & novel constraint-based approach
that sigrificantly advances the stzte oo the art (see Fig. 1), We
belizve that sceling constraint-based spproaches 15 an important
problem for cwo reasons: (1) With heuristic QM2 wehnigues,
vne wan eusily add an umacezplable amount of poise for NISQ
computers, producing uninformarive ourpms, (2 Constraim
based techniques present an optimal baseline with which w
evaluare the solutbon quality of heuristic algorithms, and can
therefore help ws understand and improve thelr operation,

QMR A MANSAT. Our primary insight 1s that we can reduce the
OMR problem 0 maviamem satisprobelity (MAXSAT) |5, Chapter
19]. MAXSAT s the ophmizatior analngue of the Beolean
sat:shab ity (SAT) prottler. While SAT salving is the cancmical
NP-complets pooblem, the past bwo decades bave wiliessed
iepressive alvences in SAT sclving with industrial-prade tools
epplicd at scale (e.a., at Amazcn [9), SAT solvers are invoked
willioos of tees dailv). MAXSAT solvers are typically sungle
Ioops that repeatadly mvoke a SAT salver to get better anc better
solutions, Compurad Lo uther approachies Lial use sudisfabilny
modulo theories (SMT) sulvers [5], 76), [T], MAXSAT sulvers
wre lighter weigh, @ they do o reguire complex theory-solver
ineraction, At a high level, we demonstrae thel 4 MAXSAT
cpproach can and should be used Tor solving wMR constraims,

As sommarized 17 Tig 1, compared to state-of-the-art
constraint-hased tools |5, |10], ovr approach car solve
significantly more QMR problems [~ 3x) and scale to larger

Molavi et al., MICRO 2022
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Dependency-Aware Compilation for Surface Code Quantum
Architectures

ADRTIN MCLAVI, University of Wisconsin-Madisun, USA
AMANDA XU, University of Wisconsin-Madison, USA
SWAMIT TANN U, University of Wiscensin-Vadison, USA

AWS ALBARGHOUTHI, University of Wiszonsin-Mad:sor, USA

Practica’ applications of quantum computing depend on fault-tolerant devices with error correction. Today,
the mest promising approach is « class of error correcting codes called surjace codes. We study the problem of
eompiling quantam cirenits for quanhum computers implementing svrface codes Optimal or nezr-optimal

compiatior. 18 critical for both efficiency and correctness. The compilation preblem requires (1) mapping
caeuit qubics to the device qubits and (2] roating execution paths between interacting qubits. We solve this
problem efficiently and near-optimally with a novel algorithm that exploits the dependency structure of circuit
aperations to formulare discrete ontimization problems that can he approvimated via simulated annealing, a
classic and simple algorithm, Our extersive evaluaticn shows that our approach is powerful and flexible for
compiling realistic workloads.

1 Introduction

Quanium computation promises to surpass classical methods o important domains, potentielly
unlccking breakthroughs in materials science, chemistry, machine leaming, and beyond. How-
ever, as individual physical qub:ts and operations are errcr-prone, these applications require an
error-correction scheme for detecting and correcting faults. Quantum error-correction suppresses
errors with redundancy: encoding the state of a single Jogical qub:t using several phvsical qubits.
Experimentalists have recently demonstrated error suppression for a single logical qubit [2, 49, 51]
and small multi-qukit systems [, 13, 21, <8).

To harness the full of the fault-tolerant quantum computers on the hor:zon, we need optimiz.ng
compilers that conver: circuit-level descriptions of quentum programs to 2rror-corrected elementary
vperalions whilke preserving as much parallelism as pussible Quantum compule is a scarce resousce,
su ineflcient compilalion can Le extremely costly. Further, the longer the compulation, Uie higher

the probability of logical errars, which affect the result.

Therefore, our goal is to answer the following question:
How can we compile a given circuit for a fault-tolerant device such tha! execution time is minimized?

V/e target a well-studied ype of error-correction scheme called a surface code [25, 35, 42]. A surface
ende quantum device embeds logical qubits irto a two-dimens.onal grid of physical qubits Two-
qubit gates impcse limitations on the execution of & quantum circuit by introducing contention
constraints. Each two-qubit gate cccupies a path on the grid and simultaneous paths cannot cross.
Gates which can theoretically be executed in parallel may be forced into sequential execution if
the path of one “blocks” the olher, as shown in Fig. 1. A compike: must carelally map qubils 1o
grid locations and route twa-qubit gates such that such cenflicts between gates are minimized and
parallclism is maximized. We call this the surface code mapping and routing (scmr) problem.
Existing work on the scmr problem is limited along two axes: optimality end generality (sce
Table 1 for a summary): (1) optimality: some techniques do not optimize execution time [59], or
optimize routing with respect to a fixed, trivial mappirg [10); (2) generality: other techniques
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