
DisQ: A Model of Distributed Quantum Processors
Le Chang†, Saitej Yavvari‡, Rance Cleaveland†, Samik Basu‡, Liyi Li‡

†University of Maryland, ‡Iowa State University

Abstract
We present DisQ, the first formal model for distributed quantum processors, enabling execution of quantum algorithms across remote QPUs
connected by quantum networking. DisQ combines Chemical Abstract Machine (CHAM) and Markov Decision Processes (MDP) to model
both concurrent and distributed quantum behaviors. It includes a distributed quantum programming language and a simulation-based equivalence
checker to verify correctness of distributed implementations against their sequential versions.

Introduction

Quantum computing promises major advantages, but current NISQ-era
hardware is limited to ∼50 coherent qubits—far fewer than the ∼5,000
needed for large-scale algorithms like Shor’s. To overcome this, the
next generation of architectures uses Distributed Quantum Computing,
where multiple QPUs are connected via photonic links to share entan-
gled states.
DisQ is a new formal model for DQC. It enables the design, analysis,
and verification of distributed quantum programs by combining ideas
from process algebra, Markov Decision Processes, and the Chemical
Abstract Machine.
DisQ addresses three key challenges:
• Verifying equivalence between sequential and distributed quantum

programs.
• Modeling intra-QPU parallelism and inter-QPU communication.
• Leveraging classical simulation via a locus-based type system that

preserves physical constraints like no-cloning.

Unlike prior quantum process algebras, DisQ adheres closely to classical
foundations, adapting bisimulation to reason about both nondeter-
ministic and quantum probabilistic behavior, enabling practical
development of distributed quantum software.

Background

DisQ models distributed computation using classical foundations to sup-
port formal analysis and verification.

Chemical Abstract Machine (CHAM): CHAM captures con-
currency through chemical reactions between molecules (processes) in-
side membranes (local contexts). Each membrane represents a local
computing region (e.g., a QPU), while airlocks enable controlled com-
munication across membranes. This abstraction naturally aligns with
the physical layout of distributed quantum processors.

Markov Decision Processes (MDPs): An MDP models execu-
tion as a sequence of steps, each consisting of: • nondeterministic
choice (e.g., which membrane performs the next operation), followed
by • probabilistic transition (e.g., the stochastic result of a quantum
operation). This structure allows DisQ to capture both structural dis-
tribution and probabilistic dynamics of computation.

Probabilistic Bisimulation over MDPs: To reason about pro-
gram equivalence, DisQ uses probabilistic bisimulation, defined over
the MDP semantics. Two programs are bisimilar if their reachable dis-
tributions over behaviors are indistinguishable. This enables verification
that a distributed implementation preserves the behavior of its sequen-
tial counterpart under both nondeterminism and probability.

Syntax

Examples

Shor’s Algorithm: Split across 3 QPUs (init, modexp, QFT), con-
nected via teleportation.

r

 u

 l|0⟩⊗ n

|1⟩⊗ m

H

QFT-1

Ua
2n-1m

H

Ua
2 0y[0,m)

 x[0]

 x[n-1]

send send

One Step Distributed Shor’s AlgorithmWe show the three
membranes, l, u, and r, below for performing one step Shor’s algo-
rithm computation, assuming that we have a 1-qubit quantum channel
c(1) between l and u, as well as c′(1) between u and r.

Conclusion

We introduce DisQ, the first formal language model for distributed
quantum processors. DisQ enables users to rewrite sequential quan-
tum programs into distributed forms, supporting execution on inter-
connected QPUs while preserving correctness via a simulation-based
equivalence mechanism.
Unlike prior quantum process algebras, which focus on concurrency and
assume pre-existing distributed structure, DisQ constructs distributed
programs and verifies them using classical probabilistic bisimu-
lation over a Markov Decision Process (MDP) semantics. It
incorporates a locus-based type system to ensure deadlock-free,
physically valid execution.
We validate DisQ through case studies including Shor’s algorithm and
quantum addition, demonstrating that distributed variants can main-
tain equivalence with their sequential forms. Looking ahead, we aim to
support temporal logics, automate verification, and analyze communi-
cation failures in distributed quantum systems.

